Python numpy.equal() Examples
The following are 30
code examples of numpy.equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_utils.py From recruit with Apache License 2.0 | 6 votes |
def test_error_message(self): with pytest.raises(AssertionError) as exc_info: self._assert_func(np.array([1, 2]), np.array([[1, 2]])) msg = str(exc_info.value) msg2 = msg.replace("shapes (2L,), (1L, 2L)", "shapes (2,), (1, 2)") msg_reference = textwrap.dedent("""\ Arrays are not equal (shapes (2,), (1, 2) mismatch) x: array([1, 2]) y: array([[1, 2]])""") try: assert_equal(msg, msg_reference) except AssertionError: assert_equal(msg2, msg_reference)
Example #2
Source File: ScatterPlotItem.py From tf-pose with Apache License 2.0 | 6 votes |
def getSpotOpts(self, recs, scale=1.0): if recs.ndim == 0: rec = recs symbol = rec['symbol'] if symbol is None: symbol = self.opts['symbol'] size = rec['size'] if size < 0: size = self.opts['size'] pen = rec['pen'] if pen is None: pen = self.opts['pen'] brush = rec['brush'] if brush is None: brush = self.opts['brush'] return (symbol, size*scale, fn.mkPen(pen), fn.mkBrush(brush)) else: recs = recs.copy() recs['symbol'][np.equal(recs['symbol'], None)] = self.opts['symbol'] recs['size'][np.equal(recs['size'], -1)] = self.opts['size'] recs['size'] *= scale recs['pen'][np.equal(recs['pen'], None)] = fn.mkPen(self.opts['pen']) recs['brush'][np.equal(recs['brush'], None)] = fn.mkBrush(self.opts['brush']) return recs
Example #3
Source File: ScatterPlotItem.py From tf-pose with Apache License 2.0 | 6 votes |
def updateSpots(self, dataSet=None): if dataSet is None: dataSet = self.data invalidate = False if self.opts['pxMode']: mask = np.equal(dataSet['sourceRect'], None) if np.any(mask): invalidate = True opts = self.getSpotOpts(dataSet[mask]) sourceRect = self.fragmentAtlas.getSymbolCoords(opts) dataSet['sourceRect'][mask] = sourceRect self.fragmentAtlas.getAtlas() # generate atlas so source widths are available. dataSet['width'] = np.array(list(imap(QtCore.QRectF.width, dataSet['sourceRect'])))/2 dataSet['targetRect'] = None self._maxSpotPxWidth = self.fragmentAtlas.max_width else: self._maxSpotWidth = 0 self._maxSpotPxWidth = 0 self.measureSpotSizes(dataSet) if invalidate: self.invalidate()
Example #4
Source File: rendering.py From pycolab with Apache License 2.0 | 6 votes |
def render(self): """Derive an `Observation` from this `BaseObservationRenderer`'s "canvas". Reminders: the values in the returned `Observation` should be accessed in a *read-only* manner exclusively; furthermore, if any `BaseObservationRenderer` method is called after `render()`, the contents of the `Observation` returned in that `render()` call are *undefined* (i.e. not guaranteed to be anything---they could be blank, random garbage, whatever). Returns: An `Observation` whose data members are derived from the information presented to this `BaseObservationRenderer` since the last call to its `clear()` method. """ for character, layer in six.iteritems(self._layers): np.equal(self._board, ord(character), out=layer) return Observation(board=self._board, layers=self._layers)
Example #5
Source File: testutils.py From lambda-packs with MIT License | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #6
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def zdivide(a, b, null=0): ''' zdivide(a, b) returns the quotient a / b as a numpy array object. Unlike numpy's divide function or a/b syntax, zdivide will thread over the earliest dimension possible; thus if a.shape is (4,2) and b.shape is 4, zdivide(a,b) is a equivalent to [ai*zinv(bi) for (ai,bi) in zip(a,b)]. The optional argument null (default: 0) may be given to specify that zeros in the arary b should instead be replaced with the given value in the result. Note that if this value is not equal to 0, then any sparse array passed as argument b must be reified. The zdivide function never raises an error due to divide-by-zero; if you desire this behavior, use the divide function instead. Note that zdivide(a,b, null=z) is not quite equivalent to a*zinv(b, null=z) unless z is 0; if z is not zero, then the same elements that are zet to z in zinv(b, null=z) are set to z in the result of zdivide(a,b, null=z) rather than the equivalent element of a times z. ''' (a,b) = unbroadcast(a,b) return czdivide(a,b, null=null)
Example #7
Source File: test_footprint_precision.py From buzzard with Apache License 2.0 | 6 votes |
def test_spatial_to_raster(fp, env): if env < fp._significant_min: pytest.skip() rng = np.random.RandomState(42) eps = np.abs(fp.coords).max() * 10 ** -buzz.env.significant xy = np.dstack(fp.meshgrid_spatial) rxy = np.dstack(fp.meshgrid_raster) res = np.equal( rxy, fp.spatial_to_raster(xy), ) assert np.all(res) res = np.equal( rxy, fp.spatial_to_raster(xy + (rng.rand(*xy.shape) * 2 - 1) * eps * LESS_ERROR), ) assert np.all(res) res = np.equal( rxy, fp.spatial_to_raster(xy + (rng.rand(*xy.shape) * 2 - 1) * eps * MORE_ERROR), ) assert not np.all(res)
Example #8
Source File: testutils.py From lambda-packs with MIT License | 6 votes |
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example #9
Source File: defchararray.py From recruit with Apache License 2.0 | 6 votes |
def less(x1, x2): """ Return (x1 < x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, greater """ return compare_chararrays(x1, x2, '<', True)
Example #10
Source File: onnx_import_test.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_equal(): """Test for logical greater in onnx operators.""" input1 = np.random.rand(1, 3, 4, 5).astype("float32") input2 = np.random.rand(1, 5).astype("float32") inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)), helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))] outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))] nodes = [helper.make_node("Equal", ["input1", "input2"], ["output"])] graph = helper.make_graph(nodes, "equal_test", inputs, outputs) greater_model = helper.make_model(graph) bkd_rep = mxnet_backend.prepare(greater_model) numpy_op = np.equal(input1, input2).astype(np.float32) output = bkd_rep.run([input1, input2]) npt.assert_almost_equal(output[0], numpy_op)
Example #11
Source File: defchararray.py From recruit with Apache License 2.0 | 6 votes |
def greater(x1, x2): """ Return (x1 > x2) element-wise. Unlike `numpy.greater`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, less_equal, less """ return compare_chararrays(x1, x2, '>', True)
Example #12
Source File: defchararray.py From recruit with Apache License 2.0 | 6 votes |
def less_equal(x1, x2): """ Return (x1 <= x2) element-wise. Unlike `numpy.less_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, greater_equal, greater, less """ return compare_chararrays(x1, x2, '<=', True)
Example #13
Source File: defchararray.py From recruit with Apache License 2.0 | 6 votes |
def greater_equal(x1, x2): """ Return (x1 >= x2) element-wise. Unlike `numpy.greater_equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- equal, not_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '>=', True)
Example #14
Source File: defchararray.py From recruit with Apache License 2.0 | 6 votes |
def equal(x1, x2): """ Return (x1 == x2) element-wise. Unlike `numpy.equal`, this comparison is performed by first stripping whitespace characters from the end of the string. This behavior is provided for backward-compatibility with numarray. Parameters ---------- x1, x2 : array_like of str or unicode Input arrays of the same shape. Returns ------- out : ndarray or bool Output array of bools, or a single bool if x1 and x2 are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less """ return compare_chararrays(x1, x2, '==', True)
Example #15
Source File: test_utils.py From recruit with Apache License 2.0 | 6 votes |
def test_subclass_that_overrides_eq(self): # While we cannot guarantee testing functions will always work for # subclasses, the tests should ideally rely only on subclasses having # comparison operators, not on them being able to store booleans # (which, e.g., astropy Quantity cannot usefully do). See gh-8452. class MyArray(np.ndarray): def __eq__(self, other): return bool(np.equal(self, other).all()) def __ne__(self, other): return not self == other a = np.array([1., 2.]).view(MyArray) b = np.array([2., 3.]).view(MyArray) assert_(type(a == a), bool) assert_(a == a) assert_(a != b) self._test_equal(a, a) self._test_not_equal(a, b) self._test_not_equal(b, a)
Example #16
Source File: test_umath.py From recruit with Apache License 2.0 | 6 votes |
def test_ignore_object_identity_in_equal(self): # Check error raised when comparing identical objects whose comparison # is not a simple boolean, e.g., arrays that are compared elementwise. a = np.array([np.array([1, 2, 3]), None], dtype=object) assert_raises(ValueError, np.equal, a, a) # Check error raised when comparing identical non-comparable objects. class FunkyType(object): def __eq__(self, other): raise TypeError("I won't compare") a = np.array([FunkyType()]) assert_raises(TypeError, np.equal, a, a) # Check identity doesn't override comparison mismatch. a = np.array([np.nan], dtype=object) assert_equal(np.equal(a, a), [False])
Example #17
Source File: recurrent.py From brainforge with GNU General Public License v3.0 | 6 votes |
def feedforward(self, X): output = super().feedforward(X) for t in range(1, self.time + 1): time_gate = np.equal(t % self.tick_array, 0.) Z = np.concatenate((self.inputs[t - 1], output), axis=-1) gated_W = self.weights * time_gate[None, :] gated_b = self.biases * time_gate output = self.activation.forward(Z.dot(gated_W) + gated_b) self.Zs.append(Z) self.gates.append([time_gate, gated_W]) self.cache.append(output) if self.return_seq: self.output = np.stack(self.cache, axis=1) else: self.output = self.cache[-1] return self.output
Example #18
Source File: testutils.py From recruit with Apache License 2.0 | 6 votes |
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example #19
Source File: eval_helpers.py From PoseWarper with Apache License 2.0 | 6 votes |
def VOCap(rec,prec): mpre = np.zeros([1,2+len(prec)]) mpre[0,1:len(prec)+1] = prec mrec = np.zeros([1,2+len(rec)]) mrec[0,1:len(rec)+1] = rec mrec[0,len(rec)+1] = 1.0 for i in range(mpre.size-2,-1,-1): mpre[0,i] = max(mpre[0,i],mpre[0,i+1]) i = np.argwhere( ~np.equal( mrec[0,1:], mrec[0,:mrec.shape[1]-1]) )+1 i = i.flatten() # compute area under the curve ap = np.sum( np.multiply( np.subtract( mrec[0,i], mrec[0,i-1]), mpre[0,i] ) ) return ap
Example #20
Source File: testutils.py From recruit with Apache License 2.0 | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #21
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_array_rank1_eq(self): """Test two equal array of rank 1 are found equal.""" a = np.array([1, 2]) b = np.array([1, 2]) self._test_equal(a, b)
Example #22
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_array_diffshape(self): """Test two arrays with different shapes are found not equal.""" a = np.array([1, 2]) b = np.array([[1, 2], [1, 2]]) self._test_not_equal(a, b)
Example #23
Source File: test_core.py From recruit with Apache License 2.0 | 5 votes |
def test_basic_ufuncs(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.cos(x), cos(xm)) assert_equal(np.cosh(x), cosh(xm)) assert_equal(np.sin(x), sin(xm)) assert_equal(np.sinh(x), sinh(xm)) assert_equal(np.tan(x), tan(xm)) assert_equal(np.tanh(x), tanh(xm)) assert_equal(np.sqrt(abs(x)), sqrt(xm)) assert_equal(np.log(abs(x)), log(xm)) assert_equal(np.log10(abs(x)), log10(xm)) assert_equal(np.exp(x), exp(xm)) assert_equal(np.arcsin(z), arcsin(zm)) assert_equal(np.arccos(z), arccos(zm)) assert_equal(np.arctan(z), arctan(zm)) assert_equal(np.arctan2(x, y), arctan2(xm, ym)) assert_equal(np.absolute(x), absolute(xm)) assert_equal(np.angle(x + 1j*y), angle(xm + 1j*ym)) assert_equal(np.angle(x + 1j*y, deg=True), angle(xm + 1j*ym, deg=True)) assert_equal(np.equal(x, y), equal(xm, ym)) assert_equal(np.not_equal(x, y), not_equal(xm, ym)) assert_equal(np.less(x, y), less(xm, ym)) assert_equal(np.greater(x, y), greater(xm, ym)) assert_equal(np.less_equal(x, y), less_equal(xm, ym)) assert_equal(np.greater_equal(x, y), greater_equal(xm, ym)) assert_equal(np.conjugate(x), conjugate(xm))
Example #24
Source File: test_core.py From recruit with Apache License 2.0 | 5 votes |
def test_masked_where_condition(self): # Tests masking functions. x = array([1., 2., 3., 4., 5.]) x[2] = masked assert_equal(masked_where(greater(x, 2), x), masked_greater(x, 2)) assert_equal(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2)) assert_equal(masked_where(less(x, 2), x), masked_less(x, 2)) assert_equal(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where(equal(x, 2), x), masked_equal(x, 2)) assert_equal(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2)) assert_equal(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5])
Example #25
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_string_arrays(self): """Test two arrays with different shapes are found not equal.""" a = np.array(['floupi', 'floupa']) b = np.array(['floupi', 'floupa']) self._test_equal(a, b) c = np.array(['floupipi', 'floupa']) self._test_not_equal(c, b)
Example #26
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_array_rank2_eq(self): """Test two equal array of rank 2 are found equal.""" a = np.array([[1, 2], [3, 4]]) b = np.array([[1, 2], [3, 4]]) self._test_equal(a, b)
Example #27
Source File: testutils.py From recruit with Apache License 2.0 | 5 votes |
def assert_array_approx_equal(x, y, decimal=6, err_msg='', verbose=True): """ Checks the equality of two masked arrays, up to given number odecimals. The equality is checked elementwise. """ def compare(x, y): "Returns the result of the loose comparison between x and y)." return approx(x, y, rtol=10. ** -decimal) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not almost equal')
Example #28
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_build_err_msg_defaults(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg) b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array([' '1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, ' '2.00003, 3.00004])') assert_equal(a, b)
Example #29
Source File: test_utils.py From recruit with Apache License 2.0 | 5 votes |
def test_build_err_msg_custom_names(self): x = np.array([1.00001, 2.00002, 3.00003]) y = np.array([1.00002, 2.00003, 3.00004]) err_msg = 'There is a mismatch' a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR')) b = ('\nItems are not equal: There is a mismatch\n FOO: array([' '1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, ' '3.00004])') assert_equal(a, b)
Example #30
Source File: test_core.py From recruit with Apache License 2.0 | 5 votes |
def test_testUfuncRegression(self): # Tests new ufuncs on MaskedArrays. for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor', ]: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(numpy.ma.core, f) args = self.d[:uf.nin] ur = uf(*args) mr = mf(*args) assert_equal(ur.filled(0), mr.filled(0), f) assert_mask_equal(ur.mask, mr.mask, err_msg=f)