Python albumentations.HorizontalFlip() Examples
The following are 15
code examples of albumentations.HorizontalFlip().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
albumentations
, or try the search function
.
Example #1
Source File: cloud_transform.py From kaggle-understanding-clouds with BSD 2-Clause "Simplified" License | 7 votes |
def get_training_augmentation(resize_to=(320,640), crop_size=(288,576)): print('[get_training_augmentation] crop_size:', crop_size, ', resize_to:', resize_to) train_transform = [ albu.HorizontalFlip(p=0.5), albu.VerticalFlip(p=0.5), albu.ShiftScaleRotate(scale_limit=0.20, rotate_limit=10, shift_limit=0.1, p=0.5, border_mode=cv2.BORDER_CONSTANT, value=0), albu.GridDistortion(p=0.5), albu.Resize(*resize_to), albu.RandomCrop(*crop_size), albu.ChannelShuffle(), albu.InvertImg(), albu.ToGray(), albu.Normalize(), ] return albu.Compose(train_transform)
Example #2
Source File: rotate.py From catalyst with Apache License 2.0 | 6 votes |
def __init__( self, input_key: str = "image", output_key: str = "rotation_factor", targets_key: str = None, rotate_probability: float = 1.0, hflip_probability: float = 0.5, one_hot_classes: int = None, ): """ Args: input_key (str): input key to use from annotation dict output_key (str): output key to use to store the result """ self.input_key = input_key self.output_key = output_key self.targets_key = targets_key self.rotate_probability = rotate_probability self.hflip_probability = hflip_probability self.rotate = albu.RandomRotate90() self.hflip = albu.HorizontalFlip() self.one_hot_classes = ( one_hot_classes * 8 if one_hot_classes is not None else None )
Example #3
Source File: test_serialization.py From albumentations with MIT License | 6 votes |
def test_transform_pipeline_serialization(seed, image, mask): aug = A.Compose( [ A.OneOrOther( A.Compose( [ A.Resize(1024, 1024), A.RandomSizedCrop(min_max_height=(256, 1024), height=512, width=512, p=1), A.OneOf( [ A.RandomSizedCrop(min_max_height=(256, 512), height=384, width=384, p=0.5), A.RandomSizedCrop(min_max_height=(256, 512), height=512, width=512, p=0.5), ] ), ] ), A.Compose( [ A.Resize(1024, 1024), A.RandomSizedCrop(min_max_height=(256, 1025), height=256, width=256, p=1), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1), ] ), ), A.HorizontalFlip(p=1), A.RandomBrightnessContrast(p=0.5), ] ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, mask=mask) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, mask=mask) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["mask"], deserialized_aug_data["mask"])
Example #4
Source File: test_serialization.py From albumentations with MIT License | 6 votes |
def test_transform_pipeline_serialization_with_bboxes(seed, image, bboxes, bbox_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.HorizontalFlip(p=1), A.RandomBrightnessContrast(p=0.5), ], bbox_params={"format": bbox_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, bboxes=bboxes, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, bboxes=bboxes, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"])
Example #5
Source File: test_serialization.py From albumentations with MIT License | 6 votes |
def test_transform_pipeline_serialization_with_keypoints(seed, image, keypoints, keypoint_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.HorizontalFlip(p=1), A.RandomBrightnessContrast(p=0.5), ], keypoint_params={"format": keypoint_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, keypoints=keypoints, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"])
Example #6
Source File: augmentations.py From yolov3-channel-pruning with MIT License | 5 votes |
def augment(image, boxes): h, w, _ = image.shape labels, boxes_coord = boxes[:, 0], boxes[:, 1:] labels = labels.tolist() boxes_coord = boxes_coord * h # 得到原图尺寸下的坐标(未归一化的坐标) boxes_coord[:, 0] = np.clip(boxes_coord[:, 0]-boxes_coord[:, 2]/2, a_min=0, a_max=None) # 确保x_min和y_min有效 boxes_coord[:, 1] = np.clip(boxes_coord[:, 1]-boxes_coord[:, 3]/2, a_min=0, a_max=None) boxes_coord = boxes_coord.tolist() # [x_min, y_min, width, height] # 在这里设置数据增强的方法 aug = A.Compose([ A.HorizontalFlip(p=0.5), # A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10, p=0.5), # A.ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=5, border_mode=0, p=0.5) ], bbox_params={'format':'coco', 'label_fields': ['category_id']}) augmented = aug(image=image, bboxes=boxes_coord, category_id=labels) # 经过aug之后,如果把boxes变没了,则返回原来的图片 if augmented['bboxes']: image = augmented['image'] boxes_coord = np.array(augmented['bboxes']) # x_min, y_min, w, h → x, y, w, h boxes_coord[:, 0] = boxes_coord[:, 0] + boxes_coord[:, 2]/2 boxes_coord[:, 1] = boxes_coord[:, 1] + boxes_coord[:, 3]/2 boxes_coord = boxes_coord / h labels = np.array(augmented['category_id'])[:, None] boxes = np.concatenate((labels, boxes_coord), 1) return image, boxes
Example #7
Source File: test_albumentations.py From docker-python with Apache License 2.0 | 5 votes |
def test_rotate(self): image = cv2.imread('/input/tests/data/dot.png') aug = HorizontalFlip(p=1) image_rotated = aug(image=image)['image']
Example #8
Source File: augmentations.py From YOLOv3-model-pruning with MIT License | 5 votes |
def augment(image, boxes): h, w, _ = image.shape labels, boxes_coord = boxes[:, 0], boxes[:, 1:] labels = labels.tolist() boxes_coord = boxes_coord * h # 得到原图尺寸下的坐标(未归一化的坐标) boxes_coord[:, 0] = np.clip(boxes_coord[:, 0]-boxes_coord[:, 2]/2, a_min=0, a_max=None) # 确保x_min和y_min有效 boxes_coord[:, 1] = np.clip(boxes_coord[:, 1]-boxes_coord[:, 3]/2, a_min=0, a_max=None) boxes_coord = boxes_coord.tolist() # [x_min, y_min, width, height] # 在这里设置数据增强的方法 aug = A.Compose([ A.HorizontalFlip(p=0.5), # A.HueSaturationValue(hue_shift_limit=10, sat_shift_limit=10, val_shift_limit=10, p=0.5), # A.ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=5, border_mode=0, p=0.5) ], bbox_params={'format':'coco', 'label_fields': ['category_id']}) augmented = aug(image=image, bboxes=boxes_coord, category_id=labels) # 经过aug之后,如果把boxes变没了,则返回原来的图片 if augmented['bboxes']: image = augmented['image'] boxes_coord = np.array(augmented['bboxes']) # x_min, y_min, w, h → x, y, w, h boxes_coord[:, 0] = boxes_coord[:, 0] + boxes_coord[:, 2]/2 boxes_coord[:, 1] = boxes_coord[:, 1] + boxes_coord[:, 3]/2 boxes_coord = boxes_coord / h labels = np.array(augmented['category_id'])[:, None] boxes = np.concatenate((labels, boxes_coord), 1) return image, boxes
Example #9
Source File: config.py From mlcomp with Apache License 2.0 | 5 votes |
def parse_albu_short(config, always_apply=False): if isinstance(config, str): if config == 'hflip': return A.HorizontalFlip(always_apply=always_apply) if config == 'vflip': return A.VerticalFlip(always_apply=always_apply) if config == 'transpose': return A.Transpose(always_apply=always_apply) raise Exception(f'Unknwon augmentation {config}') assert type(config) == dict return parse_albu([config])
Example #10
Source File: tta.py From mlcomp with Apache License 2.0 | 5 votes |
def inverse(self, a: np.array): last_dim = len(a.shape) - 1 for t in self.tfms: if isinstance(t, A.HorizontalFlip): a = flip(a, last_dim) elif isinstance(t, A.VerticalFlip): a = flip(a, last_dim - 1) elif isinstance(t, A.Transpose): axis = (0, 1, 3, 2) if len(a.shape) == 4 else (0, 2, 1) a = a.permute(*axis) return a
Example #11
Source File: test_transforms.py From albumentations with MIT License | 5 votes |
def test_force_apply(): """ Unit test for https://github.com/albumentations-team/albumentations/issues/189 """ aug = A.Compose( [ A.OneOrOther( A.Compose( [ A.RandomSizedCrop(min_max_height=(256, 1025), height=512, width=512, p=1), A.OneOf( [ A.RandomSizedCrop(min_max_height=(256, 512), height=384, width=384, p=0.5), A.RandomSizedCrop(min_max_height=(256, 512), height=512, width=512, p=0.5), ] ), ] ), A.Compose( [ A.RandomSizedCrop(min_max_height=(256, 1025), height=256, width=256, p=1), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1), ] ), ), A.HorizontalFlip(p=1), A.RandomBrightnessContrast(p=0.5), ] ) res = aug(image=np.zeros((1248, 1248, 3), dtype=np.uint8)) assert res["image"].shape[0] in (256, 384, 512) assert res["image"].shape[1] in (256, 384, 512)
Example #12
Source File: test_find_dual_start_end.py From albumentations with MIT License | 5 votes |
def empty_aug1(): return [ HorizontalFlip(p=0.001), # IAAPiecewiseAffine(p=1.0), OneOf( [ # OpticalDistortion(p=0.1), # GridDistortion(p=0.1), # IAAPerspective(p=1.0), # IAAAffine(p=1.0), IAAPiecewiseAffine(p=1.0) ], p=0.0, ), ]
Example #13
Source File: test_find_dual_start_end.py From albumentations with MIT License | 5 votes |
def empty_aug3(): return [ # HorizontalFlip(p=0.001), # IAAPiecewiseAffine(p=1.0), OneOf( [ OpticalDistortion(p=0.1), GridDistortion(p=0.1), # IAAPerspective(p=1.0), # IAAAffine(p=1.0), # IAAPiecewiseAffine(p=1.0), ], p=0.0, ) ]
Example #14
Source File: augmentation.py From EfficientDet.Pytorch with MIT License | 4 votes |
def get_augumentation(phase, width=512, height=512, min_area=0., min_visibility=0.): list_transforms = [] if phase == 'train': list_transforms.extend([ albu.augmentations.transforms.LongestMaxSize( max_size=width, always_apply=True), albu.PadIfNeeded(min_height=height, min_width=width, always_apply=True, border_mode=0, value=[0, 0, 0]), albu.augmentations.transforms.RandomResizedCrop( height=height, width=width, p=0.3), albu.augmentations.transforms.Flip(), albu.augmentations.transforms.Transpose(), albu.OneOf([ albu.RandomBrightnessContrast(brightness_limit=0.5, contrast_limit=0.4), albu.RandomGamma(gamma_limit=(50, 150)), albu.NoOp() ]), albu.OneOf([ albu.RGBShift(r_shift_limit=20, b_shift_limit=15, g_shift_limit=15), albu.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=5), albu.NoOp() ]), albu.CLAHE(p=0.8), albu.HorizontalFlip(p=0.5), albu.VerticalFlip(p=0.5), ]) if(phase == 'test' or phase == 'valid'): list_transforms.extend([ albu.Resize(height=height, width=width) ]) list_transforms.extend([ albu.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), p=1), ToTensor() ]) if(phase == 'test'): return albu.Compose(list_transforms) return albu.Compose(list_transforms, bbox_params=albu.BboxParams(format='pascal_voc', min_area=min_area, min_visibility=min_visibility, label_fields=['category_id']))
Example #15
Source File: apolloscape.py From pytorch-segmentation with MIT License | 4 votes |
def __init__(self, base_dir='../../data/apolloscape', road_record_list=[{'road':'road02_seg','record':[22, 23, 24, 25, 26]}, {'road':'road03_seg', 'record':[7, 8, 9, 10, 11, 12]}], split='train', ignore_index=255, debug=False): self.debug = debug self.base_dir = Path(base_dir) self.ignore_index = ignore_index self.split = split self.img_paths = [] self.lbl_paths = [] for road_record in road_record_list: self.road_dir = self.base_dir / Path(road_record['road']) self.record_list = road_record['record'] for record in self.record_list: img_paths_tmp = self.road_dir.glob(f'ColorImage/Record{record:03}/Camera 5/*.jpg') lbl_paths_tmp = self.road_dir.glob(f'Label/Record{record:03}/Camera 5/*.png') img_paths_basenames = {Path(img_path.name).stem for img_path in img_paths_tmp} lbl_paths_basenames = {Path(lbl_path.name).stem.replace('_bin', '') for lbl_path in lbl_paths_tmp} intersection_basenames = img_paths_basenames & lbl_paths_basenames img_paths_intersection = [self.road_dir / Path(f'ColorImage/Record{record:03}/Camera 5/{intersection_basename}.jpg') for intersection_basename in intersection_basenames] lbl_paths_intersection = [self.road_dir / Path(f'Label/Record{record:03}/Camera 5/{intersection_basename}_bin.png') for intersection_basename in intersection_basenames] self.img_paths += img_paths_intersection self.lbl_paths += lbl_paths_intersection self.img_paths.sort() self.lbl_paths.sort() print(len(self.img_paths), len(self.lbl_paths)) assert len(self.img_paths) == len(self.lbl_paths) self.resizer = albu.Resize(height=512, width=1024) self.augmenter = albu.Compose([albu.HorizontalFlip(p=0.5), # albu.RandomRotate90(p=0.5), albu.Rotate(limit=10, p=0.5), # albu.CLAHE(p=0.2), # albu.RandomContrast(p=0.2), # albu.RandomBrightness(p=0.2), # albu.RandomGamma(p=0.2), # albu.GaussNoise(p=0.2), # albu.Cutout(p=0.2) ]) self.img_transformer = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) self.lbl_transformer = torch.LongTensor