Python albumentations.RandomRotate90() Examples
The following are 4
code examples of albumentations.RandomRotate90().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
albumentations
, or try the search function
.
Example #1
Source File: rotate.py From catalyst with Apache License 2.0 | 6 votes |
def __init__( self, input_key: str = "image", output_key: str = "rotation_factor", targets_key: str = None, rotate_probability: float = 1.0, hflip_probability: float = 0.5, one_hot_classes: int = None, ): """ Args: input_key (str): input key to use from annotation dict output_key (str): output key to use to store the result """ self.input_key = input_key self.output_key = output_key self.targets_key = targets_key self.rotate_probability = rotate_probability self.hflip_probability = hflip_probability self.rotate = albu.RandomRotate90() self.hflip = albu.HorizontalFlip() self.one_hot_classes = ( one_hot_classes * 8 if one_hot_classes is not None else None )
Example #2
Source File: test_serialization.py From albumentations with MIT License | 6 votes |
def test_transform_pipeline_serialization_with_bboxes(seed, image, bboxes, bbox_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.HorizontalFlip(p=1), A.RandomBrightnessContrast(p=0.5), ], bbox_params={"format": bbox_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, bboxes=bboxes, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, bboxes=bboxes, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["bboxes"], deserialized_aug_data["bboxes"])
Example #3
Source File: test_serialization.py From albumentations with MIT License | 6 votes |
def test_transform_pipeline_serialization_with_keypoints(seed, image, keypoints, keypoint_format, labels): aug = A.Compose( [ A.OneOrOther( A.Compose([A.RandomRotate90(), A.OneOf([A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5)])]), A.Compose([A.Rotate(p=0.5), A.OneOf([A.HueSaturationValue(p=0.5), A.RGBShift(p=0.7)], p=1)]), ), A.HorizontalFlip(p=1), A.RandomBrightnessContrast(p=0.5), ], keypoint_params={"format": keypoint_format, "label_fields": ["labels"]}, ) serialized_aug = A.to_dict(aug) deserialized_aug = A.from_dict(serialized_aug) set_seed(seed) aug_data = aug(image=image, keypoints=keypoints, labels=labels) set_seed(seed) deserialized_aug_data = deserialized_aug(image=image, keypoints=keypoints, labels=labels) assert np.array_equal(aug_data["image"], deserialized_aug_data["image"]) assert np.array_equal(aug_data["keypoints"], deserialized_aug_data["keypoints"])
Example #4
Source File: apolloscape.py From pytorch-segmentation with MIT License | 4 votes |
def __init__(self, base_dir='../../data/apolloscape', road_record_list=[{'road':'road02_seg','record':[22, 23, 24, 25, 26]}, {'road':'road03_seg', 'record':[7, 8, 9, 10, 11, 12]}], split='train', ignore_index=255, debug=False): self.debug = debug self.base_dir = Path(base_dir) self.ignore_index = ignore_index self.split = split self.img_paths = [] self.lbl_paths = [] for road_record in road_record_list: self.road_dir = self.base_dir / Path(road_record['road']) self.record_list = road_record['record'] for record in self.record_list: img_paths_tmp = self.road_dir.glob(f'ColorImage/Record{record:03}/Camera 5/*.jpg') lbl_paths_tmp = self.road_dir.glob(f'Label/Record{record:03}/Camera 5/*.png') img_paths_basenames = {Path(img_path.name).stem for img_path in img_paths_tmp} lbl_paths_basenames = {Path(lbl_path.name).stem.replace('_bin', '') for lbl_path in lbl_paths_tmp} intersection_basenames = img_paths_basenames & lbl_paths_basenames img_paths_intersection = [self.road_dir / Path(f'ColorImage/Record{record:03}/Camera 5/{intersection_basename}.jpg') for intersection_basename in intersection_basenames] lbl_paths_intersection = [self.road_dir / Path(f'Label/Record{record:03}/Camera 5/{intersection_basename}_bin.png') for intersection_basename in intersection_basenames] self.img_paths += img_paths_intersection self.lbl_paths += lbl_paths_intersection self.img_paths.sort() self.lbl_paths.sort() print(len(self.img_paths), len(self.lbl_paths)) assert len(self.img_paths) == len(self.lbl_paths) self.resizer = albu.Resize(height=512, width=1024) self.augmenter = albu.Compose([albu.HorizontalFlip(p=0.5), # albu.RandomRotate90(p=0.5), albu.Rotate(limit=10, p=0.5), # albu.CLAHE(p=0.2), # albu.RandomContrast(p=0.2), # albu.RandomBrightness(p=0.2), # albu.RandomGamma(p=0.2), # albu.GaussNoise(p=0.2), # albu.Cutout(p=0.2) ]) self.img_transformer = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) self.lbl_transformer = torch.LongTensor