Python sklearn.model_selection.BaseCrossValidator() Examples
The following are 7
code examples of sklearn.model_selection.BaseCrossValidator().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.model_selection
, or try the search function
.
Example #1
Source File: build_model.py From gordo with GNU Affero General Public License v3.0 | 5 votes |
def build_split_dict(X: pd.DataFrame, split_obj: Type[BaseCrossValidator]) -> dict: """ Get dictionary of cross-validation training dataset split metadata Parameters ---------- X: pd.DataFrame The training dataset that will be split during cross-validation. split_obj: Type[sklearn.model_selection.BaseCrossValidator] The cross-validation object that returns train, test indices for splitting. Returns ------- split_metadata: Dict[str,Any] Dictionary of cross-validation train/test split metadata """ split_metadata: Dict[str, Any] = dict() for i, (train_ind, test_ind) in enumerate(split_obj.split(X)): split_metadata.update( { f"fold-{i+1}-train-start": X.index[train_ind[0]], f"fold-{i+1}-train-end": X.index[train_ind[-1]], f"fold-{i+1}-test-start": X.index[test_ind[0]], f"fold-{i+1}-test-end": X.index[test_ind[-1]], } ) split_metadata.update({f"fold-{i+1}-n-train": len(train_ind)}) split_metadata.update({f"fold-{i+1}-n-test": len(test_ind)}) return split_metadata
Example #2
Source File: split.py From nyaggle with MIT License | 5 votes |
def check_cv(cv: Union[int, Iterable, BaseCrossValidator] = 5, y: Optional[Union[pd.Series, np.ndarray]] = None, stratified: bool = False, random_state: int = 0): if cv is None: cv = 5 if isinstance(cv, numbers.Integral): if stratified and (y is not None) and (type_of_target(y) in ('binary', 'multiclass')): return StratifiedKFold(cv, shuffle=True, random_state=random_state) else: return KFold(cv, shuffle=True, random_state=random_state) return model_selection.check_cv(cv, y, stratified)
Example #3
Source File: split.py From nyaggle with MIT License | 5 votes |
def __init__(self, n: int, base_validator: BaseCrossValidator): self.base_validator = base_validator self.n = n
Example #4
Source File: split.py From nyaggle with MIT License | 5 votes |
def __init__(self, n: int, base_validator: BaseCrossValidator): self.base_validator = base_validator self.n = n
Example #5
Source File: split.py From nyaggle with MIT License | 5 votes |
def __init__(self, n: int, base_validator: BaseCrossValidator): assert n > 0, "n is 1-origin and should be greater than 0" self.base_validator = Take(1, Skip(n - 1, base_validator)) self.n = n
Example #6
Source File: target_encoder.py From nyaggle with MIT License | 5 votes |
def __init__(self, base_transformer: BaseEstimator, cv: Optional[Union[int, Iterable, BaseCrossValidator]] = None, return_same_type: bool = True, groups: Optional[pd.Series] = None): self.cv = cv self.base_transformer = base_transformer self.n_splits = None self.transformers = None self.return_same_type = return_same_type self.groups = groups
Example #7
Source File: optimize.py From optuna with MIT License | 4 votes |
def __init__( self, params: Dict[str, Any], train_set: "lgb.Dataset", num_boost_round: int = 1000, folds: Optional[ Union[ Generator[Tuple[int, int], None, None], Iterator[Tuple[int, int]], "BaseCrossValidator", ] ] = None, nfold: int = 5, stratified: bool = True, shuffle: bool = True, fobj: Optional[Callable[..., Any]] = None, feval: Optional[Callable[..., Any]] = None, feature_name: str = "auto", categorical_feature: str = "auto", early_stopping_rounds: Optional[int] = None, fpreproc: Optional[Callable[..., Any]] = None, verbose_eval: Optional[Union[bool, int]] = True, show_stdv: bool = True, seed: int = 0, callbacks: Optional[List[Callable[..., Any]]] = None, time_budget: Optional[int] = None, sample_size: Optional[int] = None, study: Optional[optuna.study.Study] = None, optuna_callbacks: Optional[List[Callable[[Study, FrozenTrial], None]]] = None, verbosity: int = 1, ) -> None: super(LightGBMTunerCV, self).__init__( params, train_set, num_boost_round, fobj=fobj, feval=feval, feature_name=feature_name, categorical_feature=categorical_feature, early_stopping_rounds=early_stopping_rounds, verbose_eval=verbose_eval, callbacks=callbacks, time_budget=time_budget, sample_size=sample_size, study=study, optuna_callbacks=optuna_callbacks, verbosity=verbosity, ) self.lgbm_kwargs["folds"] = folds self.lgbm_kwargs["nfold"] = nfold self.lgbm_kwargs["stratified"] = stratified self.lgbm_kwargs["shuffle"] = shuffle self.lgbm_kwargs["show_stdv"] = show_stdv self.lgbm_kwargs["seed"] = seed self.lgbm_kwargs["fpreproc"] = fpreproc