Python maskrcnn_benchmark.modeling.make_layers.make_conv3x3() Examples
The following are 16
code examples of maskrcnn_benchmark.modeling.make_layers.make_conv3x3().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
maskrcnn_benchmark.modeling.make_layers
, or try the search function
.
Example #1
Source File: roi_mask_feature_extractors.py From Res2Net-maskrcnn with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #2
Source File: roi_mask_feature_extractors.py From R2CNN.pytorch with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #3
Source File: roi_mask_feature_extractors.py From Clothing-Detection with GNU General Public License v3.0 | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #4
Source File: roi_mask_feature_extractors.py From DetNAS with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #5
Source File: roi_mask_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = PyramidRROIAlign( output_size=(resolution, resolution), scales=scales, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION self.word_margin = cfg.MODEL.ROI_REC_HEAD.BOXES_MARGIN self.det_margin = cfg.MODEL.RRPN.GT_BOX_MARGIN self.rescale = self.word_margin / self.det_margin next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #6
Source File: roi_rec_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #7
Source File: roi_mask_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #8
Source File: roi_mask_feature_extractors.py From sampling-free with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #9
Source File: roi_mask_feature_extractors.py From maskrcnn-benchmark with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #10
Source File: roi_mask_feature_extractors.py From training with Apache License 2.0 | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #11
Source File: roi_mask_feature_extractors.py From NAS-FCOS with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #12
Source File: roi_mask_feature_extractors.py From RRPN_pytorch with MIT License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = PyramidRROIAlign( output_size=(resolution, resolution), scales=scales, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION self.word_margin = cfg.MODEL.ROI_REC_HEAD.BOXES_MARGIN self.det_margin = cfg.MODEL.RRPN.GT_BOX_MARGIN self.rescale = self.word_margin / self.det_margin next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #13
Source File: roi_rec_feature_extractors.py From RRPN_pytorch with MIT License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #14
Source File: roi_mask_feature_extractors.py From RRPN_pytorch with MIT License | 5 votes |
def __init__(self, cfg): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3(next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name)
Example #15
Source File: roi_mask_feature_extractors.py From DF-Traffic-Sign-Identification with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features
Example #16
Source File: roi_mask_feature_extractors.py From TinyBenchmark with MIT License | 5 votes |
def __init__(self, cfg, in_channels): """ Arguments: num_classes (int): number of output classes input_size (int): number of channels of the input once it's flattened representation_size (int): size of the intermediate representation """ super(MaskRCNNFPNFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_MASK_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels self.pooler = pooler use_gn = cfg.MODEL.ROI_MASK_HEAD.USE_GN layers = cfg.MODEL.ROI_MASK_HEAD.CONV_LAYERS dilation = cfg.MODEL.ROI_MASK_HEAD.DILATION next_feature = input_size self.blocks = [] for layer_idx, layer_features in enumerate(layers, 1): layer_name = "mask_fcn{}".format(layer_idx) module = make_conv3x3( next_feature, layer_features, dilation=dilation, stride=1, use_gn=use_gn ) self.add_module(layer_name, module) next_feature = layer_features self.blocks.append(layer_name) self.out_channels = layer_features