Python maskrcnn_benchmark.modeling.make_layers.make_fc() Examples
The following are 28
code examples of maskrcnn_benchmark.modeling.make_layers.make_fc().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
maskrcnn_benchmark.modeling.make_layers
, or try the search function
.
Example #1
Source File: roi_box_feature_extractors.py From Res2Net-maskrcnn with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #2
Source File: roi_box_feature_extractors.py From NAS-FCOS with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn)
Example #3
Source File: roi_box_feature_extractors.py From training with Apache License 2.0 | 6 votes |
def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn)
Example #4
Source File: roi_box_feature_extractors.py From RRPN_pytorch with MIT License | 6 votes |
def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = PyramidRROIAlign( output_size=(resolution, resolution), scales=scales, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn)
Example #5
Source File: roi_box_feature_extractors.py From maskrcnn-benchmark with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #6
Source File: roi_box_feature_extractors.py From sampling-free with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #7
Source File: roi_box_feature_extractors.py From RRPN_pytorch with MIT License | 6 votes |
def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn)
Example #8
Source File: roi_box_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 6 votes |
def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn)
Example #9
Source File: roi_box_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 6 votes |
def __init__(self, cfg): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = PyramidRROIAlign( output_size=(resolution, resolution), scales=scales, ) input_size = cfg.MODEL.BACKBONE.OUT_CHANNELS * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn)
Example #10
Source File: roi_box_feature_extractors.py From DF-Traffic-Sign-Identification with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #11
Source File: roi_box_feature_extractors.py From DetNAS with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #12
Source File: roi_box_feature_extractors.py From Clothing-Detection with GNU General Public License v3.0 | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #13
Source File: roi_box_feature_extractors.py From TinyBenchmark with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO # ##################### changed by hui ################################# level_map = cfg.MODEL.ROI_BOX_HEAD.POOLER_LEVEL_MAP level_map_kwargs = cfg.MODEL.ROI_BOX_HEAD.POOLER_LEVEL_MAP_KWARGS pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, level_map=level_map, level_map_kwargs=level_map_kwargs ) # ######################################################################## input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #14
Source File: roi_box_feature_extractors.py From R2CNN.pytorch with MIT License | 6 votes |
def __init__(self, cfg, in_channels): super(FPN2MLPFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) input_size = in_channels * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN self.pooler = pooler self.fc6 = make_fc(input_size, representation_size, use_gn) self.fc7 = make_fc(representation_size, representation_size, use_gn) self.out_channels = representation_size
Example #15
Source File: roi_box_feature_extractors.py From RRPN_pytorch with MIT License | 4 votes |
def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False)
Example #16
Source File: roi_box_feature_extractors.py From DF-Traffic-Sign-Identification with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #17
Source File: roi_box_feature_extractors.py From RRPN_pytorch with MIT License | 4 votes |
def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False)
Example #18
Source File: roi_box_feature_extractors.py From NAS-FCOS with BSD 2-Clause "Simplified" License | 4 votes |
def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False)
Example #19
Source File: roi_box_feature_extractors.py From TinyBenchmark with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #20
Source File: roi_box_feature_extractors.py From training with Apache License 2.0 | 4 votes |
def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False)
Example #21
Source File: roi_box_feature_extractors.py From maskrcnn-benchmark with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #22
Source File: roi_box_feature_extractors.py From sampling-free with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #23
Source File: roi_box_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 4 votes |
def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False)
Example #24
Source File: roi_box_feature_extractors.py From remote_sensing_object_detection_2019 with MIT License | 4 votes |
def __init__(self, cfg): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False)
Example #25
Source File: roi_box_feature_extractors.py From DetNAS with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN use_syncbn = cfg.MODEL.ROI_BOX_HEAD.USE_SYNCBN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) elif use_syncbn: xconvs.append(DistributedSyncBN(in_channels)) xconvs.append(nn.ReLU(inplace=False)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #26
Source File: roi_box_feature_extractors.py From Clothing-Detection with GNU General Public License v3.0 | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #27
Source File: roi_box_feature_extractors.py From R2CNN.pytorch with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size
Example #28
Source File: roi_box_feature_extractors.py From Res2Net-maskrcnn with MIT License | 4 votes |
def __init__(self, cfg, in_channels): super(FPNXconv1fcFeatureExtractor, self).__init__() resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION scales = cfg.MODEL.ROI_BOX_HEAD.POOLER_SCALES sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO pooler = Pooler( output_size=(resolution, resolution), scales=scales, sampling_ratio=sampling_ratio, ) self.pooler = pooler use_gn = cfg.MODEL.ROI_BOX_HEAD.USE_GN conv_head_dim = cfg.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM num_stacked_convs = cfg.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS dilation = cfg.MODEL.ROI_BOX_HEAD.DILATION xconvs = [] for ix in range(num_stacked_convs): xconvs.append( nn.Conv2d( in_channels, conv_head_dim, kernel_size=3, stride=1, padding=dilation, dilation=dilation, bias=False if use_gn else True ) ) in_channels = conv_head_dim if use_gn: xconvs.append(group_norm(in_channels)) xconvs.append(nn.ReLU(inplace=True)) self.add_module("xconvs", nn.Sequential(*xconvs)) for modules in [self.xconvs,]: for l in modules.modules(): if isinstance(l, nn.Conv2d): torch.nn.init.normal_(l.weight, std=0.01) if not use_gn: torch.nn.init.constant_(l.bias, 0) input_size = conv_head_dim * resolution ** 2 representation_size = cfg.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM self.fc6 = make_fc(input_size, representation_size, use_gn=False) self.out_channels = representation_size