Python resnet.resnet50() Examples

The following are 17 code examples of resnet.resnet50(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module resnet , or try the search function .
Example #1
Source File: base_model.py    From training_results_v0.5 with Apache License 2.0 6 votes vote down vote up
def __init__(self, use_nhwc=False, pad_input=False):
        super().__init__()

        if use_nhwc:
            rn50 = resnet50_nhwc(pretrained=True, pad_input=pad_input)
            idx = 5
        else:
            rn50 = resnet50(pretrained=True)
            idx = 6

        # discard last Resnet block, avrpooling and classification FC
        self.layer1 = nn.Sequential(*list(rn50.children())[:idx])
        self.layer2 = nn.Sequential(*list(rn50.children())[idx:idx+1])
        self.layer3 = nn.Sequential(*list(rn50.children())[idx+1:idx+2])

        # modify conv4 if necessary
        padding = None
        # Always deal with stride in first block
        modulelist = list(self.layer2.children())
        _ModifyBlock(modulelist[0], bottleneck=True, stride=(1,1)) 
Example #2
Source File: gazenet.py    From GazeFollowing with MIT License 6 votes vote down vote up
def __init__(self):
        super(FPN, self).__init__()

        self.relu = nn.ReLU(inplace=True)

        # bottom up
        self.resnet = resnet_fpn.resnet50(pretrained=True)

        # top down
        self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.c5_conv = nn.Conv2d(2048, 256, (1, 1))
        self.c4_conv = nn.Conv2d(1024, 256, (1, 1))
        self.c3_conv = nn.Conv2d(512, 256, (1, 1))
        self.c2_conv = nn.Conv2d(256, 256, (1, 1))
        #self.max_pool = nn.MaxPool2d((1, 1), stride=2)

        self.p5_conv = nn.Conv2d(256, 256, (3, 3), padding=1)
        self.p4_conv = nn.Conv2d(256, 256, (3, 3), padding=1)
        self.p3_conv = nn.Conv2d(256, 256, (3, 3), padding=1)
        self.p2_conv = nn.Conv2d(256, 256, (3, 3), padding=1)

        # predict heatmap
        self.sigmoid = nn.Sigmoid()
        self.predict = nn.Conv2d(256, 1, (3, 3), padding=1) 
Example #3
Source File: gazenet.py    From GazeFollowing with MIT License 5 votes vote down vote up
def __init__(self):
        super(GazeNet, self).__init__()
        self.face_net = M.resnet50(pretrained=True)
        self.face_process = nn.Sequential(nn.Linear(2048, 512),
                                          nn.ReLU(inplace=True))

        self.fpn_net = FPN()

        self.eye_position_transform = nn.Sequential(nn.Linear(2, 256),
                                                    nn.ReLU(inplace=True))

        self.fusion = nn.Sequential(nn.Linear(512 + 256, 256),
                                    nn.ReLU(inplace=True),
                                    nn.Linear(256, 2))

        self.relu = nn.ReLU(inplace=False)
       
        # change first conv layer for fpn_net because we concatenate 
        # multi-scale gaze field with image image 
        conv = [x.clone() for x in self.fpn_net.resnet.conv1.parameters()][0]
        new_kernel_channel = conv.data.mean(dim=1, keepdim=True).repeat(1, 3, 1, 1)
        new_kernel = torch.cat((conv.data, new_kernel_channel), 1)
        new_conv = nn.Conv2d(6, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        new_conv.weight.data = new_kernel
        self.fpn_net.resnet.conv1 = new_conv 
Example #4
Source File: model.py    From A2J with MIT License 5 votes vote down vote up
def __init__(self, num_classes, is_3D=True):
        super(A2J_model, self).__init__()
        self.is_3D = is_3D 
        self.Backbone = ResNetBackBone() # 1 channel depth only, resnet50 
        self.regressionModel = RegressionModel(2048, num_classes=num_classes)
        self.classificationModel = ClassificationModel(1024, num_classes=num_classes)
        if is_3D:
            self.DepthRegressionModel = DepthRegressionModel(2048, num_classes=num_classes) 
Example #5
Source File: model.py    From A2J with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNetBackBone, self).__init__()
        
        modelPreTrain50 = resnet.resnet50(pretrained=True)
        self.model = modelPreTrain50 
Example #6
Source File: model.py    From A2J with MIT License 5 votes vote down vote up
def __init__(self, num_classes, is_3D=True):
        super(A2J_model, self).__init__()
        self.is_3D = is_3D 
        self.Backbone = ResNetBackBone() # 1 channel depth only, resnet50 
        self.regressionModel = RegressionModel(2048, num_classes=num_classes)
        self.classificationModel = ClassificationModel(1024, num_classes=num_classes)
        if is_3D:
            self.DepthRegressionModel = DepthRegressionModel(2048, num_classes=num_classes) 
Example #7
Source File: model.py    From A2J with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNetBackBone, self).__init__()
        
        modelPreTrain50 = resnet.resnet50(pretrained=True)
        self.model = modelPreTrain50 
Example #8
Source File: custom.py    From SiamMask with MIT License 5 votes vote down vote up
def __init__(self, pretrain=False):
        super(ResDown, self).__init__()
        self.features = resnet50(layer3=True, layer4=False)
        if pretrain:
            load_pretrain(self.features, 'resnet.model')

        self.downsample = ResDownS(1024, 256)

        self.layers = [self.downsample, self.features.layer2, self.features.layer3]
        self.train_nums = [1, 3]
        self.change_point = [0, 0.5]

        self.unfix(0.0) 
Example #9
Source File: custom.py    From SiamMask with MIT License 5 votes vote down vote up
def __init__(self, pretrain=False):
        super(ResDown, self).__init__()
        self.features = resnet50(layer3=True, layer4=False)
        if pretrain:
            load_pretrain(self.features, 'resnet.model')

        self.downsample = ResDownS(1024, 256)

        self.layers = [self.downsample, self.features.layer2, self.features.layer3]
        self.train_nums = [1, 3]
        self.change_point = [0, 0.5]

        self.unfix(0.0) 
Example #10
Source File: custom.py    From SiamMask with MIT License 5 votes vote down vote up
def __init__(self, pretrain=False):
        super(ResDown, self).__init__()
        self.features = resnet50(layer3=True, layer4=False)
        if pretrain:
            load_pretrain(self.features, 'resnet.model')

        self.downsample = ResDownS(1024, 256)
        self.layers = [self.downsample, self.features.layer2, self.features.layer3]
        self.train_nums = [1, 3]
        self.change_point = [0, 0.5]

        self.unfix(0.0) 
Example #11
Source File: model.py    From Silhouette-Guided-3D with MIT License 5 votes vote down vote up
def initialize_encoder(model_name, num_classes, use_pretrained=True):
    # Initialize these variables which will be set in this if statement. Each of these
    #   variables is model specific.
    model_ft = None

    if model_name == "resnet18":
        """ Resnet18
        """
        model_ft = resnet.resnet18(pretrained=use_pretrained, num_classes=1000)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)

    elif model_name == "resnet34":
        """ Resnet34
        """
        model_ft = resnet.resnet34(pretrained=use_pretrained, num_classes=1000)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)

    elif model_name == "resnet50":
        """ Resnet50
        """
        model_ft = resnet.resnet50(pretrained=use_pretrained, num_classes=1000)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)

    else:
        print("Invalid model name, exiting...")
        exit()

    return model_ft

# full model 
Example #12
Source File: model.py    From Cross-Modal-Re-ID-baseline with MIT License 5 votes vote down vote up
def __init__(self, arch='resnet50'):
        super(visible_module, self).__init__()

        model_v = resnet50(pretrained=True,
                           last_conv_stride=1, last_conv_dilation=1)
        # avg pooling to global pooling
        self.visible = model_v 
Example #13
Source File: networks.py    From Pyramid-Attention-Networks-pytorch with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, pretrained=True):
        """Declare all needed layers."""
        super(ResNet50, self).__init__()
        self.model = resnet.resnet50(pretrained=pretrained)
        self.relu = self.model.relu  # Place a hook

        layers_cfg = [4, 5, 6, 7]
        self.blocks = []
        for i, num_this_layer in enumerate(layers_cfg):
            self.blocks.append(list(self.model.children())[num_this_layer]) 
Example #14
Source File: run.py    From PytorchConverter with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def GenModelZoo():
    """  Specify the input shape and model initializing param  """
    return {
        0: (torchvision.models.squeezenet1_1, [1, 3, 224, 224], [True], {}),
        1: (resnet.resnet50, [1, 3, 224, 224], [True], {}),
        2: (torchvision.models.densenet121, [1, 3, 224, 224], [False], {}),
        3: (MobileNet, [1, 3, 224, 224], [], {}),

        17: (models._netG_1, [1, 100, 1, 1], [1, 100, 3, 64, 1], {}),
        18: (FaceBoxes, [1, 3, 224, 224], [], {}),
        20: (UNet.UNet, [1, 3, 64, 64], [2], {}),
    } 
Example #15
Source File: model.py    From Cross-Modal-Re-ID-baseline with MIT License 5 votes vote down vote up
def __init__(self,  class_num, no_local= 'on', gm_pool = 'on', arch='resnet50'):
        super(embed_net, self).__init__()

        self.thermal_module = thermal_module(arch=arch)
        self.visible_module = visible_module(arch=arch)
        self.base_resnet = base_resnet(arch=arch)
        self.non_local = no_local
        if self.non_local =='on':
            layers=[3, 4, 6, 3]
            non_layers=[0,2,3,0]
            self.NL_1 = nn.ModuleList(
                [Non_local(256) for i in range(non_layers[0])])
            self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
            self.NL_2 = nn.ModuleList(
                [Non_local(512) for i in range(non_layers[1])])
            self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
            self.NL_3 = nn.ModuleList(
                [Non_local(1024) for i in range(non_layers[2])])
            self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
            self.NL_4 = nn.ModuleList(
                [Non_local(2048) for i in range(non_layers[3])])
            self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])


        pool_dim = 2048
        self.l2norm = Normalize(2)
        self.bottleneck = nn.BatchNorm1d(pool_dim)
        self.bottleneck.bias.requires_grad_(False)  # no shift

        self.classifier = nn.Linear(pool_dim, class_num, bias=False)

        self.bottleneck.apply(weights_init_kaiming)
        self.classifier.apply(weights_init_classifier)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.gm_pool = gm_pool 
Example #16
Source File: model.py    From Cross-Modal-Re-ID-baseline with MIT License 5 votes vote down vote up
def __init__(self, arch='resnet50'):
        super(base_resnet, self).__init__()

        model_base = resnet50(pretrained=True,
                              last_conv_stride=1, last_conv_dilation=1)
        # avg pooling to global pooling
        model_base.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.base = model_base 
Example #17
Source File: model.py    From Cross-Modal-Re-ID-baseline with MIT License 5 votes vote down vote up
def __init__(self, arch='resnet50'):
        super(thermal_module, self).__init__()

        model_t = resnet50(pretrained=True,
                           last_conv_stride=1, last_conv_dilation=1)
        # avg pooling to global pooling
        self.thermal = model_t