Python resnet.ResNet() Examples
The following are 4
code examples of resnet.ResNet().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
resnet
, or try the search function
.
Example #1
Source File: demo.py From blitznet with MIT License | 6 votes |
def main(argv=None): # pylint: disable=unused-argument assert args.detect or args.segment, "Either detect or segment should be True" assert args.ckpt > 0, "Specify the number of checkpoint" net = ResNet(config=net_config, depth=50, training=False) loader = Loader(osp.join(EVAL_DIR, 'demodemo')) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess: detector = Detector(sess, net, loader, net_config, no_gt=args.no_seg_gt, folder=osp.join(loader.folder, 'output')) detector.restore_from_ckpt(args.ckpt) for name in loader.get_filenames(): image = loader.load_image(name) h, w = image.shape[:2] print('Processing {}'.format(name + loader.data_format)) detector.feed_forward(img=image, name=name, w=w, h=h, draw=True, seg_gt=None, gt_bboxes=None, gt_cats=None) print('Done')
Example #2
Source File: keypoint_net.py From MIT-Driverless-CV-TrainingInfra with Apache License 2.0 | 6 votes |
def __init__(self, num_kpt=7, image_size=(80, 80), onnx_mode=False, init_weight=True): super(KeypointNet, self).__init__() net_size = 16 self.conv = nn.Conv2d(in_channels=3, out_channels=net_size, kernel_size=7, stride=1, padding=3) # torch.nn.init.xavier_uniform(self.conv.weight) self.bn = nn.BatchNorm2d(net_size) self.relu = nn.ReLU() self.res1 = ResNet(net_size, net_size) self.res2 = ResNet(net_size, net_size * 2) self.res3 = ResNet(net_size * 2, net_size * 4) self.res4 = ResNet(net_size * 4, net_size * 8) self.out = nn.Conv2d(in_channels=net_size * 8, out_channels=num_kpt, kernel_size=1, stride=1, padding=0) # torch.nn.init.xavier_uniform(self.out.weight) if init_weight: self._initialize_weights() self.image_size = image_size self.num_kpt = num_kpt self.onnx_mode = onnx_mode
Example #3
Source File: main.py From blitznet with MIT License | 5 votes |
def init_detectot(self): assert args.detect or args.segment, "Either detect or segment should be True" assert args.ckpt > 0, "Specify the number of checkpoint" net = ResNet(config=net_config, depth=50, training=False) self.loader = Loader(opj(EVAL_DIR, 'demodemo')) self.detector = Detector(self.sess, net, self.loader, net_config, no_gt=args.no_seg_gt, folder=opj(self.loader.folder, 'output')) self.detector.restore_from_ckpt(args.ckpt)
Example #4
Source File: net_base.py From TF_Face_Toolbox with Apache License 2.0 | 4 votes |
def net_select(name, data_format='NCHW', weight_decay=5e-4): if name == 'SphereNet': from sphere import SphereNet network = SphereNet(data_format=data_format, weight_decay=weight_decay) elif name == 'ResNeXt-26': from resnext import ResNeXt network = ResNeXt(num_layers=26, num_card=32, data_format=data_format, weight_decay=weight_decay) elif name == 'ResNet-50': from resnet import ResNet network = ResNet(num_layers=50, data_format=data_format, weight_decay=weight_decay) elif name == 'ShuffleNet-v2-small': from shufflenet_v2 import ShuffleNet_v2_small network = ShuffleNet_v2_small(alpha=2.0, se=False, residual=False, data_format=data_format, weight_decay=weight_decay) elif name == 'ShuffleNet-v2-middle': from shufflenet_v2 import ShuffleNet_v2_middle network = ShuffleNet_v2_middle(se=False, residual=False, data_format=data_format, weight_decay=weight_decay) elif name == 'ShuffleNet-v2-large': from shufflenet_v2 import ShuffleNet_v2_large network = ShuffleNet_v2_large(data_format=data_format, weight_decay=weight_decay) elif name == 'MobileNet-v2': pass elif name == 'Inception-v4': pass elif name == 'VGG16': pass elif name == 'AlexNet': pass else: raise ValueError('Unsupport network architecture.') return network