Python optimizer.Optimizer() Examples
The following are 30
code examples of optimizer.Optimizer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
optimizer
, or try the search function
.
Example #1
Source File: optimizer_largetest.py From compare-codecs with Apache License 2.0 | 6 votes |
def test_OptimizeOverMultipleEncoders(self): """Run the optimizer for a few cycles with a real codec. This may turn out to be an over-heavy test for every-checkin testing.""" my_fileset = test_tools.TestFileSet() my_codec = vp8.Vp8Codec() my_optimizer = optimizer.Optimizer(my_codec, my_fileset, cache_class=encoder.EncodingDiskCache) # Establish a baseline. for bitrate, videofile_name in my_fileset.AllFilesAndRates(): videofile = encoder.Videofile(videofile_name) my_encoding = my_optimizer.BestEncoding(bitrate, videofile) my_encoding.Execute().Store() # Try to improve it. encoding_count = 0 while encoding_count < 10: (bitrate, videofile_name) = random.choice(my_fileset.AllFilesAndRates()) videofile = encoder.Videofile(videofile_name) next_encoding = my_optimizer.BestUntriedEncoding(bitrate, videofile) if not next_encoding: break encoding_count += 1 next_encoding.Execute().Store()
Example #2
Source File: load_opt_sched.py From amortized-variational-filtering with MIT License | 6 votes |
def load_opt_sched(train_config, model): inf_params = model.inference_parameters() gen_params = model.generative_parameters() inf_opt = Optimizer(train_config['optimizer'], inf_params, lr=train_config['inference_learning_rate'], clip_grad_norm=train_config['clip_grad_norm']) inf_sched = ExponentialLR(inf_opt.opt, 0.999) gen_opt = Optimizer(train_config['optimizer'], gen_params, lr=train_config['generation_learning_rate'], clip_grad_norm=train_config['clip_grad_norm']) gen_sched = ExponentialLR(gen_opt.opt, 0.999) return (inf_opt, gen_opt), (inf_sched, gen_sched)
Example #3
Source File: visual_metrics.py From compare-codecs with Apache License 2.0 | 6 votes |
def ListMpegSingleConfigResults(codecs, datatable, score_function=None): encoder_list = {} optimizer_list = {} for codec_name in codecs: codec = pick_codec.PickCodec(codec_name) my_optimizer = optimizer.Optimizer(codec, score_function=score_function, file_set=mpeg_settings.MpegFiles()) optimizer_list[codec_name] = my_optimizer encoder_list[codec_name] = my_optimizer.BestOverallEncoder() for rate, filename in sorted(mpeg_settings.MpegFiles().AllFilesAndRates()): videofile = encoder.Videofile(filename) for codec_name in codecs: if encoder_list[codec_name]: my_encoding = encoder_list[codec_name].Encoding(rate, videofile) my_encoding.Recover() AddOneEncoding(codec_name, optimizer_list[codec_name], my_encoding, videofile, datatable)
Example #4
Source File: graph_metrics.py From compare-codecs with Apache License 2.0 | 6 votes |
def __init__(self, filename, codec, score_function): self.name = codec.name self.videofile = encoder.Videofile(filename) self.fileset = optimizer.FileAndRateSet() self.fileset.AddFilesAndRates([filename], fileset_picker.ChooseRates(self.videofile.width, self.videofile.framerate)) self.my_optimizer = optimizer.Optimizer(codec, file_set=self.fileset, score_function=score_function) self.filename = filename self.encoder = self.my_optimizer.BestOverallEncoder() if not self.encoder: raise NotEnoughDataError('No overall encoder for %s on %s' % (codec.name, filename)) self.points = None
Example #5
Source File: vp9_unittest.py From compare-codecs with Apache License 2.0 | 6 votes |
def test_Passes(self): """This test checks that both 1-pass and 2-pass encoding works.""" codec = vp9.Vp9Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') start_encoder = codec.StartEncoder(my_optimizer.context) encoder1 = encoder.Encoder(my_optimizer.context, start_encoder.parameters.ChangeValue('passes', 1)) encoding1 = encoder1.Encoding(1000, videofile) encoder2 = encoder.Encoder(my_optimizer.context, start_encoder.parameters.ChangeValue('passes', 2)) encoding2 = encoder2.Encoding(1000, videofile) encoding1.Execute() encoding2.Execute() self.assertTrue(encoding1.result) self.assertTrue(encoding2.result)
Example #6
Source File: optimizer_unittest.py From compare-codecs with Apache License 2.0 | 6 votes |
def test_MultipleOptimizers(self): # Make sure other score directories don't interfere with this test. encoder_configuration.conf.override_scorepath_for_test([]) os.mkdir(os.path.join(encoder_configuration.conf.sysdir(), 'first_dir')) os.mkdir(os.path.join(encoder_configuration.conf.sysdir(), 'second_dir')) one_optimizer = optimizer.Optimizer(self.codec, scoredir='first_dir') another_optimizer = optimizer.Optimizer(self.codec, scoredir='second_dir') self.assertNotEqual(one_optimizer.context.cache.workdir, another_optimizer.context.cache.workdir) # Storing one encoding's score should not affect the other's. one_encoding = one_optimizer.BestEncoding(100, self.videofile) one_encoding.Execute().Store() another_encoding = another_optimizer.BestEncoding(100, self.videofile) self.assertFalse(another_encoding.Result()) another_encoding.Recover() self.assertFalse(another_encoding.Result())
Example #7
Source File: vp9_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = vp9.Vp9Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(50.0, my_optimizer.Score(encoding)) self.assertEqual(1, len(encoding.result['frame'])) # Check that expected results are present and "reasonable". print encoding.result self.assertTrue(0.02 < encoding.result['encode_cputime'] < 15.0) self.assertTrue(100 < encoding.result['bitrate'] < 500) self.assertTrue(500 < encoding.result['frame'][0]['size'] < 12000)
Example #8
Source File: vp8_mpeg_1d_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_SuggestTweakDecreasesCq(self): codec = vp8_mpeg_1d.Vp8CodecMpeg1dMode() videofile = encoder.Videofile('foofile_640_480_30.yuv') my_optimizer = optimizer.Optimizer(codec) my_encoder = codec.StartEncoder(my_optimizer.context) encoding = encoder.Encoding(my_encoder, 500, videofile) encoding.result = {'bitrate': 200} # Since the bitrate is too high, the suggstion should be to increase it. new_encoding = codec.SuggestTweak(encoding) self.assertEqual('0', new_encoding.encoder.parameters.GetValue('key-q'))
Example #9
Source File: vp8_mpeg_1d_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = vp8_mpeg_1d.Vp8CodecMpeg1dMode() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(50.0, my_optimizer.Score(encoding))
Example #10
Source File: x265_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = x265.X265Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #11
Source File: x265_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_TenBlackFrames(self): codec = x265.X265Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithBlankFrames( 'ten_black_frames_1024_768_30.yuv', 10) encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #12
Source File: openh264_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = openh264.OpenH264Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #13
Source File: openh264_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_TenBlackFrames(self): codec = openh264.OpenH264Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithBlankFrames( 'ten_black_frames_1024_768_30.yuv', 10) encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #14
Source File: vp8_mpeg_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_SuggestedTweakRefersToSameContext(self): codec = vp8_mpeg.Vp8CodecMpegMode() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) # Fake result. encoding.result = {'psnr': 42.0, 'bitrate':1000} next_encoding = codec.SuggestTweak(encoding) self.assertEqual(encoding.context, next_encoding.context)
Example #15
Source File: x264_baseline_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = x264_baseline.X264BaselineCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #16
Source File: libavc_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = libavc.LibavcCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #17
Source File: libavc_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_TenBlackFrames(self): codec = libavc.LibavcCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithBlankFrames( 'ten_black_frames_1024_768_30.yuv', 10) encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Most codecs should be good at this. self.assertLess(40.0, my_optimizer.Score(encoding))
Example #18
Source File: main.py From neural-network-genetic-algorithm with MIT License | 5 votes |
def generate(generations, population, nn_param_choices, dataset): """Generate a network with the genetic algorithm. Args: generations (int): Number of times to evole the population population (int): Number of networks in each generation nn_param_choices (dict): Parameter choices for networks dataset (str): Dataset to use for training/evaluating """ optimizer = Optimizer(nn_param_choices) networks = optimizer.create_population(population) # Evolve the generation. for i in range(generations): logging.info("***Doing generation %d of %d***" % (i + 1, generations)) # Train and get accuracy for networks. train_networks(networks, dataset) # Get the average accuracy for this generation. average_accuracy = get_average_accuracy(networks) # Print out the average accuracy each generation. logging.info("Generation average: %.2f%%" % (average_accuracy * 100)) logging.info('-'*80) # Evolve, except on the last iteration. if i != generations - 1: # Do the evolution. networks = optimizer.evolve(networks) # Sort our final population. networks = sorted(networks, key=lambda x: x.accuracy, reverse=True) # Print out the top 5 networks. print_networks(networks[:5])
Example #19
Source File: optimizertester.py From erays with MIT License | 5 votes |
def __init__(self, line, debug): reader = EffectReader(line) # reader = TraceReader(line) reader.parse_trace() self.code_size = len(reader.code) signal.signal(signal.SIGALRM, handler) signal.alarm(15) # print(reader.signature) optimizer = Optimizer(reader.code) InstructionExecutor(reader, optimizer, debug) signal.alarm(0)
Example #20
Source File: dpg.py From Python-Reinforcement-Learning-Projects with MIT License | 5 votes |
def _init_modules(self): # Replay memory self.replay_memory = ReplayMemory(history_len=self.history_len, capacity=self.capacity) # Actor critic network self.ac_network = ActorCriticNet(input_dim=self.state_dim, action_dim=self.action_dim, critic_layers=self.critic_layers, actor_layers=self.actor_layers, actor_activation=self.actor_activation, scope='ac_network') # Target network self.target_network = ActorCriticNet(input_dim=self.state_dim, action_dim=self.action_dim, critic_layers=self.critic_layers, actor_layers=self.actor_layers, actor_activation=self.actor_activation, scope='target_network') # Optimizer self.optimizer = Optimizer(config=self.config, ac_network=self.ac_network, target_network=self.target_network, replay_memory=self.replay_memory) # Ops for updating target network self.clone_op = self.target_network.get_clone_op(self.ac_network, tau=self.tau) # For tensorboard self.t_score = tf.placeholder(dtype=tf.float32, shape=[], name='new_score') tf.summary.scalar("score", self.t_score, collections=['dpg']) self.summary_op = tf.summary.merge_all('dpg')
Example #21
Source File: q_learning.py From Python-Reinforcement-Learning-Projects with MIT License | 5 votes |
def _init_modules(self): # Replay memory self.replay_memory = ReplayMemory(history_len=self.num_frames, capacity=self.capacity, batch_size=self.batch_size, input_scale=self.input_scale) input_shape = self.feedback_size + (self.num_frames,) # Q-network self.q_network = QNetwork(input_shape=input_shape, n_outputs=len(self.actions), network_type=self.config['network_type'], scope='q_network') # Target network self.target_network = QNetwork(input_shape=input_shape, n_outputs=len(self.actions), network_type=self.config['network_type'], scope='target_network') # Optimizer self.optimizer = Optimizer(config=self.config, feedback_size=self.feedback_size, q_network=self.q_network, target_network=self.target_network, replay_memory=self.replay_memory) # Ops for updating target network self.clone_op = self.target_network.get_clone_op(self.q_network) # For tensorboard self.t_score = tf.placeholder(dtype=tf.float32, shape=[], name='new_score') tf.summary.scalar("score", self.t_score, collections=['dqn']) self.summary_op = tf.summary.merge_all('dqn')
Example #22
Source File: main.py From mnist-multi-gpu with Apache License 2.0 | 5 votes |
def generate(generations, population, nn_param_choices, dataset): """Generate a network with the genetic algorithm. Args: generations (int): Number of times to evole the population population (int): Number of networks in each generation nn_param_choices (dict): Parameter choices for networks dataset (str): Dataset to use for training/evaluating """ optimizer = Optimizer(nn_param_choices) networks = optimizer.create_population(population) # Evolve the generation. for i in range(generations): logging.info("***Doing generation %d of %d***" % (i + 1, generations)) # Train and get accuracy for networks. train_networks(networks, dataset) # Get the average accuracy for this generation. average_accuracy = get_average_accuracy(networks) # Print out the average accuracy each generation. logging.info("Generation average: %.2f%%" % (average_accuracy * 100)) logging.info('-'*80) # Evolve, except on the last iteration. if i != generations - 1: # Do the evolution. networks = optimizer.evolve(networks) # Sort our final population. networks = sorted(networks, key=lambda x: x.accuracy, reverse=True) # Print out the top 5 networks. print_networks(networks[:5])
Example #23
Source File: optimizer_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def testInit(self): optimizer.Optimizer(self.codec, self.file_set, cache_class=self.cache_class)
Example #24
Source File: mjpeg_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_ParametersSet(self): codec = mjpeg.MotionJpegCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') my_encoder = encoder.Encoder(my_optimizer.context, encoder.OptionValueSet(codec.option_set, '-qmin 1 -qmax 2', formatter=codec.option_formatter)) encoding = my_encoder.Encoding(5000, videofile) encoding.Execute() self.assertLess(50.0, my_optimizer.Score(encoding))
Example #25
Source File: mjpeg_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_ParametersAdjusted(self): codec = mjpeg.MotionJpegCodec() my_optimizer = optimizer.Optimizer(codec) my_encoder = encoder.Encoder(my_optimizer.context, encoder.OptionValueSet(codec.option_set, '-qmin 2 -qmax 2', formatter=codec.option_formatter)) self.assertEquals('2', my_encoder.parameters.GetValue('qmin')) self.assertEquals('2', my_encoder.parameters.GetValue('qmax')) # qmax is less than qmin. Should be adjusted to be above. my_encoder = encoder.Encoder(my_optimizer.context, encoder.OptionValueSet(codec.option_set, '-qmin 3 -qmax 2', formatter=codec.option_formatter)) self.assertEquals('3', my_encoder.parameters.GetValue('qmin')) self.assertEquals('3', my_encoder.parameters.GetValue('qmax'))
Example #26
Source File: file_codec_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_OneBlackFrame(self): codec = CopyingCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() self.assertTrue(encoding.Result()) self.assertIn('encode_cputime', encoding.Result()) self.assertIn('encode_clocktime', encoding.Result()) self.assertIn('yuv_md5', encoding.Result())
Example #27
Source File: file_codec_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_VerifyOneBlackFrame(self): codec = CopyingCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() self.assertTrue(encoding.VerifyEncode())
Example #28
Source File: file_codec_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_VerifyMd5Varies(self): codec = CorruptingCodec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() first_md5 = encoding.Result()['yuv_md5'] encoding.Execute() self.assertNotEqual(first_md5, encoding.Result()['yuv_md5'])
Example #29
Source File: file_codec_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_VerifyMatroskaFile(self): codec = vp8.Vp8Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # Matroska files will be identical if generated within the same # clock second. So wait a bit. time.sleep(1) self.assertTrue(encoding.VerifyEncode())
Example #30
Source File: file_codec_unittest.py From compare-codecs with Apache License 2.0 | 5 votes |
def test_MatroskaFrameInfo(self): codec = vp8.Vp8Codec() my_optimizer = optimizer.Optimizer(codec) videofile = test_tools.MakeYuvFileWithOneBlankFrame( 'one_black_frame_1024_768_30.yuv') encoding = my_optimizer.BestEncoding(1000, videofile) encoding.Execute() # This line comes from file_codec.Execute() encodedfile = '%s/%s.%s' % (encoding.Workdir(), videofile.basename, codec.extension) frameinfo = file_codec.MatroskaFrameInfo(encodedfile) self.assertEquals(len(frameinfo), 1) self.assertGreater(os.path.getsize(encodedfile) * 8, frameinfo[0]['size'])