Python osgeo.gdal.GRA_Bilinear() Examples

The following are 5 code examples of osgeo.gdal.GRA_Bilinear(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module osgeo.gdal , or try the search function .
Example #1
Source File: test_georef.py    From wradlib with MIT License 6 votes vote down vote up
def test_reproject_raster_dataset(self):
        georef.reproject_raster_dataset(
            self.ds, spacing=0.005, resample=gdal.GRA_Bilinear, align=True
        )
        georef.reproject_raster_dataset(
            self.ds, size=(1000, 1000), resample=gdal.GRA_Bilinear, align=True
        )
        with pytest.raises(NameError):
            georef.reproject_raster_dataset(self.ds)
        dst = georef.epsg_to_osr(25832)
        georef.reproject_raster_dataset(
            self.ds,
            spacing=100.0,
            resample=gdal.GRA_Bilinear,
            align=True,
            projection_target=dst,
        ) 
Example #2
Source File: base.py    From geoio with MIT License 5 votes vote down vote up
def _upsample_from_gdalobj(self,src,dst,method='bilinear'):
        """Hidden to run the actual reprojection gdal code that is called
        from two higher level methods."""

        # Set reprojection method
        if isinstance(method,int):
            pass
        elif method == "nearest":
            method = gdal.GRA_NearestNeighbour
        elif method == "bilinear":
            method = gdal.GRA_Bilinear
        elif method == "cubic":
            method = gdal.GRA_Cubic
        elif method == "average":
            method = gdal.GRA_Average
        else:
            raise ValueError("requested method is not understood.")

        # Do the reprojection
        gdal.ReprojectImage(src,
                            dst,
                            self.meta.projection_string,
                            dst.GetProjection(),
                            method)

        # Return data and free the temp image.
        return dst.ReadAsArray() 
Example #3
Source File: gdal2tiles.py    From gdal2tiles with MIT License 4 votes vote down vote up
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''):
    """Scales down query dataset to the tile dataset"""

    querysize = dsquery.RasterXSize
    tilesize = dstile.RasterXSize
    tilebands = dstile.RasterCount

    if options.resampling == 'average':

        # Function: gdal.RegenerateOverview()
        for i in range(1, tilebands+1):
            # Black border around NODATA
            res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
                                          'average')
            if res != 0:
                exit_with_error("RegenerateOverview() failed on %s, error %d" % (
                    tilefilename, res))

    elif options.resampling == 'antialias':

        # Scaling by PIL (Python Imaging Library) - improved Lanczos
        array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
        for i in range(tilebands):
            array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1),
                                                       0, 0, querysize, querysize)
        im = Image.fromarray(array, 'RGBA')     # Always four bands
        im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
        if os.path.exists(tilefilename):
            im0 = Image.open(tilefilename)
            im1 = Image.composite(im1, im0, im1)
        im1.save(tilefilename, tiledriver)

    else:

        if options.resampling == 'near':
            gdal_resampling = gdal.GRA_NearestNeighbour

        elif options.resampling == 'bilinear':
            gdal_resampling = gdal.GRA_Bilinear

        elif options.resampling == 'cubic':
            gdal_resampling = gdal.GRA_Cubic

        elif options.resampling == 'cubicspline':
            gdal_resampling = gdal.GRA_CubicSpline

        elif options.resampling == 'lanczos':
            gdal_resampling = gdal.GRA_Lanczos

        # Other algorithms are implemented by gdal.ReprojectImage().
        dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0,
                                 tilesize / float(querysize)))
        dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))

        res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling)
        if res != 0:
            exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) 
Example #4
Source File: raster.py    From wradlib with MIT License 4 votes vote down vote up
def get_raster_elevation(dataset, resample=None, **kwargs):
    """Return surface elevation corresponding to raster dataset
       The resampling algorithm is chosen based on scale ratio

    Parameters
    ----------
    dataset : gdal.Dataset
        raster image with georeferencing (GeoTransform at least)
    resample : GDALResampleAlg
        If None the best algorithm is chosen based on scales.
        GRA_NearestNeighbour = 0, GRA_Bilinear = 1, GRA_Cubic = 2,
        GRA_CubicSpline = 3, GRA_Lanczos = 4, GRA_Average = 5, GRA_Mode = 6,
        GRA_Max = 8, GRA_Min = 9, GRA_Med = 10, GRA_Q1 = 11, GRA_Q3 = 12
    kwargs : keyword arguments
        passed to wradlib.io.dem.get_strm()

    Returns
    -------
    elevation : :class:`numpy:numpy.ndarray`
        Array of shape (rows, cols, 2) containing elevation
    """
    extent = get_raster_extent(dataset)
    src_ds = wradlib.io.dem.get_srtm(extent, **kwargs)

    driver = gdal.GetDriverByName("MEM")
    dst_ds = driver.CreateCopy("ds", dataset)

    if resample is None:
        src_gt = src_ds.GetGeoTransform()
        dst_gt = dst_ds.GetGeoTransform()
        src_scale = min(abs(src_gt[1]), abs(src_gt[5]))
        dst_scale = min(abs(dst_gt[1]), abs(dst_gt[5]))
        ratio = dst_scale / src_scale

        resample = gdal.GRA_Bilinear
        if ratio > 2:
            resample = gdal.GRA_Average
        if ratio < 0.5:
            resample = gdal.GRA_NearestNeighbour

    gdal.ReprojectImage(
        src_ds, dst_ds, src_ds.GetProjection(), dst_ds.GetProjection(), resample
    )
    elevation = read_gdal_values(dst_ds)

    return elevation 
Example #5
Source File: gdal2tiles.py    From gdal2tiles with MIT License 4 votes vote down vote up
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''):
    """Scales down query dataset to the tile dataset"""

    querysize = dsquery.RasterXSize
    tilesize = dstile.RasterXSize
    tilebands = dstile.RasterCount

    if options.resampling == 'average':

        # Function: gdal.RegenerateOverview()
        for i in range(1, tilebands + 1):
            # Black border around NODATA
            res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
                                          'average')
            if res != 0:
                exit_with_error("RegenerateOverview() failed on %s, error %d" % (
                    tilefilename, res))

    elif options.resampling == 'antialias':

        # Scaling by PIL (Python Imaging Library) - improved Lanczos
        array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
        for i in range(tilebands):
            array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1),
                                                       0, 0, querysize, querysize)
        im = Image.fromarray(array, 'RGBA')     # Always four bands
        im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
        if os.path.exists(tilefilename):
            im0 = Image.open(tilefilename)
            im1 = Image.composite(im1, im0, im1)
        im1.save(tilefilename, tiledriver)

    else:

        if options.resampling == 'near':
            gdal_resampling = gdal.GRA_NearestNeighbour

        elif options.resampling == 'bilinear':
            gdal_resampling = gdal.GRA_Bilinear

        elif options.resampling == 'cubic':
            gdal_resampling = gdal.GRA_Cubic

        elif options.resampling == 'cubicspline':
            gdal_resampling = gdal.GRA_CubicSpline

        elif options.resampling == 'lanczos':
            gdal_resampling = gdal.GRA_Lanczos

        # Other algorithms are implemented by gdal.ReprojectImage().
        dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0,
                                 tilesize / float(querysize)))
        dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))

        res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling)
        if res != 0:
            exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))