Python osgeo.gdal.GRA_Bilinear() Examples
The following are 5
code examples of osgeo.gdal.GRA_Bilinear().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
osgeo.gdal
, or try the search function
.
Example #1
Source File: test_georef.py From wradlib with MIT License | 6 votes |
def test_reproject_raster_dataset(self): georef.reproject_raster_dataset( self.ds, spacing=0.005, resample=gdal.GRA_Bilinear, align=True ) georef.reproject_raster_dataset( self.ds, size=(1000, 1000), resample=gdal.GRA_Bilinear, align=True ) with pytest.raises(NameError): georef.reproject_raster_dataset(self.ds) dst = georef.epsg_to_osr(25832) georef.reproject_raster_dataset( self.ds, spacing=100.0, resample=gdal.GRA_Bilinear, align=True, projection_target=dst, )
Example #2
Source File: base.py From geoio with MIT License | 5 votes |
def _upsample_from_gdalobj(self,src,dst,method='bilinear'): """Hidden to run the actual reprojection gdal code that is called from two higher level methods.""" # Set reprojection method if isinstance(method,int): pass elif method == "nearest": method = gdal.GRA_NearestNeighbour elif method == "bilinear": method = gdal.GRA_Bilinear elif method == "cubic": method = gdal.GRA_Cubic elif method == "average": method = gdal.GRA_Average else: raise ValueError("requested method is not understood.") # Do the reprojection gdal.ReprojectImage(src, dst, self.meta.projection_string, dst.GetProjection(), method) # Return data and free the temp image. return dst.ReadAsArray()
Example #3
Source File: gdal2tiles.py From gdal2tiles with MIT License | 4 votes |
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''): """Scales down query dataset to the tile dataset""" querysize = dsquery.RasterXSize tilesize = dstile.RasterXSize tilebands = dstile.RasterCount if options.resampling == 'average': # Function: gdal.RegenerateOverview() for i in range(1, tilebands+1): # Black border around NODATA res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), 'average') if res != 0: exit_with_error("RegenerateOverview() failed on %s, error %d" % ( tilefilename, res)) elif options.resampling == 'antialias': # Scaling by PIL (Python Imaging Library) - improved Lanczos array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) for i in range(tilebands): array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1), 0, 0, querysize, querysize) im = Image.fromarray(array, 'RGBA') # Always four bands im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) if os.path.exists(tilefilename): im0 = Image.open(tilefilename) im1 = Image.composite(im1, im0, im1) im1.save(tilefilename, tiledriver) else: if options.resampling == 'near': gdal_resampling = gdal.GRA_NearestNeighbour elif options.resampling == 'bilinear': gdal_resampling = gdal.GRA_Bilinear elif options.resampling == 'cubic': gdal_resampling = gdal.GRA_Cubic elif options.resampling == 'cubicspline': gdal_resampling = gdal.GRA_CubicSpline elif options.resampling == 'lanczos': gdal_resampling = gdal.GRA_Lanczos # Other algorithms are implemented by gdal.ReprojectImage(). dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize))) dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) if res != 0: exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))
Example #4
Source File: raster.py From wradlib with MIT License | 4 votes |
def get_raster_elevation(dataset, resample=None, **kwargs): """Return surface elevation corresponding to raster dataset The resampling algorithm is chosen based on scale ratio Parameters ---------- dataset : gdal.Dataset raster image with georeferencing (GeoTransform at least) resample : GDALResampleAlg If None the best algorithm is chosen based on scales. GRA_NearestNeighbour = 0, GRA_Bilinear = 1, GRA_Cubic = 2, GRA_CubicSpline = 3, GRA_Lanczos = 4, GRA_Average = 5, GRA_Mode = 6, GRA_Max = 8, GRA_Min = 9, GRA_Med = 10, GRA_Q1 = 11, GRA_Q3 = 12 kwargs : keyword arguments passed to wradlib.io.dem.get_strm() Returns ------- elevation : :class:`numpy:numpy.ndarray` Array of shape (rows, cols, 2) containing elevation """ extent = get_raster_extent(dataset) src_ds = wradlib.io.dem.get_srtm(extent, **kwargs) driver = gdal.GetDriverByName("MEM") dst_ds = driver.CreateCopy("ds", dataset) if resample is None: src_gt = src_ds.GetGeoTransform() dst_gt = dst_ds.GetGeoTransform() src_scale = min(abs(src_gt[1]), abs(src_gt[5])) dst_scale = min(abs(dst_gt[1]), abs(dst_gt[5])) ratio = dst_scale / src_scale resample = gdal.GRA_Bilinear if ratio > 2: resample = gdal.GRA_Average if ratio < 0.5: resample = gdal.GRA_NearestNeighbour gdal.ReprojectImage( src_ds, dst_ds, src_ds.GetProjection(), dst_ds.GetProjection(), resample ) elevation = read_gdal_values(dst_ds) return elevation
Example #5
Source File: gdal2tiles.py From gdal2tiles with MIT License | 4 votes |
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''): """Scales down query dataset to the tile dataset""" querysize = dsquery.RasterXSize tilesize = dstile.RasterXSize tilebands = dstile.RasterCount if options.resampling == 'average': # Function: gdal.RegenerateOverview() for i in range(1, tilebands + 1): # Black border around NODATA res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i), 'average') if res != 0: exit_with_error("RegenerateOverview() failed on %s, error %d" % ( tilefilename, res)) elif options.resampling == 'antialias': # Scaling by PIL (Python Imaging Library) - improved Lanczos array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8) for i in range(tilebands): array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize) im = Image.fromarray(array, 'RGBA') # Always four bands im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS) if os.path.exists(tilefilename): im0 = Image.open(tilefilename) im1 = Image.composite(im1, im0, im1) im1.save(tilefilename, tiledriver) else: if options.resampling == 'near': gdal_resampling = gdal.GRA_NearestNeighbour elif options.resampling == 'bilinear': gdal_resampling = gdal.GRA_Bilinear elif options.resampling == 'cubic': gdal_resampling = gdal.GRA_Cubic elif options.resampling == 'cubicspline': gdal_resampling = gdal.GRA_CubicSpline elif options.resampling == 'lanczos': gdal_resampling = gdal.GRA_Lanczos # Other algorithms are implemented by gdal.ReprojectImage(). dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize))) dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling) if res != 0: exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res))