Python absl.testing.absltest.get_default_test_tmpdir() Examples

The following are 14 code examples of absl.testing.absltest.get_default_test_tmpdir(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module absl.testing.absltest , or try the search function .
Example #1
Source File: continuous_collect_eval_test.py    From tensor2robot with Apache License 2.0 6 votes vote down vote up
def test_run_pose_env_collect(self, demo_policy_cls):
    urdf_root = pose_env.get_pybullet_urdf_root()

    config_dir = 'research/pose_env/configs'
    gin_config = os.path.join(
        FLAGS.test_srcdir, config_dir, 'run_random_collect.gin')
    gin.parse_config_file(gin_config)
    tmp_dir = absltest.get_default_test_tmpdir()
    root_dir = os.path.join(tmp_dir, str(demo_policy_cls))
    gin.bind_parameter('PoseToyEnv.urdf_root', urdf_root)
    gin.bind_parameter(
        'collect_eval_loop.root_dir', root_dir)
    gin.bind_parameter('run_meta_env.num_tasks', 2)
    gin.bind_parameter('run_meta_env.num_episodes_per_adaptation', 1)
    gin.bind_parameter(
        'collect_eval_loop.policy_class', demo_policy_cls)
    continuous_collect_eval.collect_eval_loop()
    output_files = tf.io.gfile.glob(os.path.join(
        root_dir, 'policy_collect', '*.tfrecord'))
    self.assertLen(output_files, 2) 
Example #2
Source File: make_train_test_split_test.py    From deep-molecular-massspec with Apache License 2.0 6 votes vote down vote up
def setUp(self):
    super(MakeTrainTestSplitTest, self).setUp()
    test_data_directory = test_utils.test_dir('testdata/')
    self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
    test_sdf_file_large = os.path.join(test_data_directory, 'test_14_mend.sdf')
    test_sdf_file_small = os.path.join(test_data_directory, 'test_2_mend.sdf')

    max_atoms = ms_constants.MAX_ATOMS
    self.mol_list_large = parse_sdf_utils.get_sdf_to_mol(
        test_sdf_file_large, max_atoms=max_atoms)
    self.mol_list_small = parse_sdf_utils.get_sdf_to_mol(
        test_sdf_file_small, max_atoms=max_atoms)
    self.inchikey_dict_large = train_test_split_utils.make_inchikey_dict(
        self.mol_list_large)
    self.inchikey_dict_small = train_test_split_utils.make_inchikey_dict(
        self.mol_list_small)
    self.inchikey_list_large = list(self.inchikey_dict_large.keys())
    self.inchikey_list_small = list(self.inchikey_dict_small.keys()) 
Example #3
Source File: utils_impl_test.py    From federated with Apache License 2.0 5 votes vote down vote up
def test_atomic_write(self):
    for name in ['foo.csv', 'baz.csv.bz2']:
      dataframe = pd.DataFrame(dict(a=[1, 2], b=[4.0, 5.0]))
      output_file = os.path.join(absltest.get_default_test_tmpdir(), name)
      utils_impl.atomic_write_to_csv(dataframe, output_file)
      dataframe2 = pd.read_csv(output_file, index_col=0)
      pd.testing.assert_frame_equal(dataframe, dataframe2)

      # Overwriting
      dataframe3 = pd.DataFrame(dict(a=[1, 2, 3], b=[4.0, 5.0, 6.0]))
      utils_impl.atomic_write_to_csv(dataframe3, output_file)
      dataframe4 = pd.read_csv(output_file, index_col=0)
      pd.testing.assert_frame_equal(dataframe3, dataframe4) 
Example #4
Source File: utils_impl_test.py    From federated with Apache License 2.0 5 votes vote down vote up
def test_atomic_read(self):
    for name in ['foo.csv', 'baz.csv.bz2']:
      dataframe = pd.DataFrame(dict(a=[1, 2], b=[4.0, 5.0]))
      csv_file = os.path.join(absltest.get_default_test_tmpdir(), name)
      utils_impl.atomic_write_to_csv(dataframe, csv_file)

      dataframe2 = utils_impl.atomic_read_from_csv(csv_file)
      pd.testing.assert_frame_equal(dataframe, dataframe2) 
Example #5
Source File: spectra_predictor_test.py    From deep-molecular-massspec with Apache License 2.0 5 votes vote down vote up
def setUp(self):
    super(SpectraPredictorTest, self).setUp()
    self.np_fingerprint_input = np.ones((2, 4096))
    self.np_mol_weight_input = np.reshape(np.array([18., 16.]), (2, 1))
    self.test_data_directory = test_utils.test_dir("testdata/")
    self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
    self.test_file_short = os.path.join(self.test_data_directory,
                                        "test_2_mend.sdf") 
Example #6
Source File: util_test.py    From deep-molecular-massspec with Apache License 2.0 5 votes vote down vote up
def setUp(self):
    self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir()) 
Example #7
Source File: model_eval_lib_test.py    From model-analysis with Apache License 2.0 5 votes vote down vote up
def testLoadValidationResult(self):
    result = validation_result_pb2.ValidationResult(validation_ok=True)
    path = os.path.join(absltest.get_default_test_tmpdir(), 'results.tfrecord')
    with tf.io.TFRecordWriter(path) as writer:
      writer.write(result.SerializeToString())
    loaded_result = model_eval_lib.load_validation_result(path)
    self.assertTrue(loaded_result.validation_ok) 
Example #8
Source File: model_eval_lib_test.py    From model-analysis with Apache License 2.0 5 votes vote down vote up
def testLoadValidationResultDir(self):
    result = validation_result_pb2.ValidationResult(validation_ok=True)
    path = os.path.join(absltest.get_default_test_tmpdir(),
                        constants.VALIDATIONS_KEY)
    with tf.io.TFRecordWriter(path) as writer:
      writer.write(result.SerializeToString())
    loaded_result = model_eval_lib.load_validation_result(os.path.dirname(path))
    self.assertTrue(loaded_result.validation_ok) 
Example #9
Source File: model_eval_lib_test.py    From model-analysis with Apache License 2.0 5 votes vote down vote up
def testLoadValidationResultEmptyFile(self):
    path = os.path.join(absltest.get_default_test_tmpdir(),
                        constants.VALIDATIONS_KEY)
    with tf.io.TFRecordWriter(path):
      pass
    with self.assertRaises(AssertionError):
      model_eval_lib.load_validation_result(path) 
Example #10
Source File: export_with_assets_as_zip_test.py    From dm_control with Apache License 2.0 5 votes vote down vote up
def setUpModule():
  # Flags are not parsed when this test is invoked by `nosetests`, so we fall
  # back on using the default value for `--test_tmpdir`.
  if not FLAGS.is_parsed():
    FLAGS.test_tmpdir = absltest.get_default_test_tmpdir()
    FLAGS.mark_as_parsed() 
Example #11
Source File: export_with_assets_test.py    From dm_control with Apache License 2.0 5 votes vote down vote up
def setUpModule():
  # Flags are not parsed when this test is invoked by `nosetests`, so we fall
  # back on using the default value for ``--test_tmpdir`.
  if not FLAGS.is_parsed():
    FLAGS.test_tmpdir = absltest.get_default_test_tmpdir()
    FLAGS.mark_as_parsed() 
Example #12
Source File: debugging_test.py    From dm_control with Apache License 2.0 5 votes vote down vote up
def setup_debug_mode(self, debug_mode_enabled, full_dump_enabled=False):
    if debug_mode_enabled:
      debugging.enable_debug_mode()
    else:
      debugging.disable_debug_mode()
    if full_dump_enabled:
      base_dir = absltest.get_default_test_tmpdir()
      self.dump_dir = os.path.join(base_dir, 'mjcf_debugging_test')
      shutil.rmtree(self.dump_dir, ignore_errors=True)
      os.mkdir(self.dump_dir)
    else:
      self.dump_dir = ''
    debugging.set_full_dump_dir(self.dump_dir) 
Example #13
Source File: image_utils_test.py    From dm_control with Apache License 2.0 5 votes vote down vote up
def test_save_images_on_failure(self):
    random_state = np.random.RandomState(SEED)
    image1 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8)
    image2 = random_state.randint(0, 255, size=(64, 64, 3), dtype=np.uint8)
    diff = (0.5 * (image2.astype(np.int16) - image1 + 255)).astype(np.uint8)
    message = 'exception message'
    output_dir = absltest.get_default_test_tmpdir()

    @image_utils.save_images_on_failure(output_dir=output_dir)
    def func():
      raise image_utils.ImagesNotCloseError(message, image1, image2)

    with six.assertRaisesRegex(self, image_utils.ImagesNotCloseError,
                               '{}.*'.format(message)):
      func()

    def validate_saved_file(name, expected_contents):
      path = os.path.join(output_dir, '{}-{}.png'.format('func', name))
      self.assertTrue(os.path.isfile(path))
      image = Image.open(path)
      actual_contents = np.array(image)
      np.testing.assert_array_equal(expected_contents, actual_contents)

    validate_saved_file('expected', image1)
    validate_saved_file('actual', image2)
    validate_saved_file('difference', diff) 
Example #14
Source File: molecule_estimator_test.py    From deep-molecular-massspec with Apache License 2.0 4 votes vote down vote up
def setUp(self):
    """Sets up a dataset json for regular, baseline, and all_predicted cases."""
    super(MoleculeEstimatorTest, self).setUp()
    self.test_data_directory = test_utils.test_dir('testdata/')
    record_file = os.path.join(self.test_data_directory, 'test_14_record.gz')

    self.num_eval_examples = parse_sdf_utils.parse_info_file(record_file)[
        'num_examples']
    self.temp_dir = tempfile.mkdtemp(dir=absltest.get_default_test_tmpdir())
    self.default_dataset_config_file = os.path.join(self.temp_dir,
                                                    'dataset_config.json')
    self.baseline_dataset_config_file = os.path.join(
        self.temp_dir, 'baseline_dataset_config.json')
    self.all_predicted_dataset_config_file = os.path.join(
        self.temp_dir, 'all_predicted_dataset_config.json')

    dataset_names = [
        ds_constants.SPECTRUM_PREDICTION_TRAIN_KEY,
        ds_constants.SPECTRUM_PREDICTION_TEST_KEY,
        ds_constants.LIBRARY_MATCHING_OBSERVED_KEY,
        ds_constants.LIBRARY_MATCHING_PREDICTED_KEY,
        ds_constants.LIBRARY_MATCHING_QUERY_KEY
    ]

    default_dataset_config = {key: [record_file] for key in dataset_names}
    default_dataset_config[
        ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = os.path.join(
            self.test_data_directory, 'test_14.spectra_library.npy')
    with tf.gfile.Open(self.default_dataset_config_file, 'w') as f:
      json.dump(default_dataset_config, f)

    # Test estimator behavior when predicted set is empty
    baseline_dataset_config = dict(
        [(key, [record_file])
         if key != ds_constants.LIBRARY_MATCHING_PREDICTED_KEY else (key, [])
         for key in dataset_names])
    baseline_dataset_config[
        ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = os.path.join(
            self.test_data_directory, 'test_14.spectra_library.npy')
    with tf.gfile.Open(self.baseline_dataset_config_file, 'w') as f:
      json.dump(baseline_dataset_config, f)

    # Test estimator behavior when observed set is empty
    all_predicted_dataset_config = dict(
        [(key, [record_file])
         if key != ds_constants.LIBRARY_MATCHING_OBSERVED_KEY else (key, [])
         for key in dataset_names])
    all_predicted_dataset_config[
        ds_constants.TRAINING_SPECTRA_ARRAY_KEY] = os.path.join(
            self.test_data_directory, 'test_14.spectra_library.npy')
    with tf.gfile.Open(self.all_predicted_dataset_config_file, 'w') as f:
      json.dump(all_predicted_dataset_config, f)