Python utils.image.transform_preds() Examples
The following are 7
code examples of utils.image.transform_preds().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.image
, or try the search function
.
Example #1
Source File: demo.py From pytorch-pose-hg-3d with GNU General Public License v3.0 | 6 votes |
def demo_image(image, model, opt): s = max(image.shape[0], image.shape[1]) * 1.0 c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32) trans_input = get_affine_transform( c, s, 0, [opt.input_w, opt.input_h]) inp = cv2.warpAffine(image, trans_input, (opt.input_w, opt.input_h), flags=cv2.INTER_LINEAR) inp = (inp / 255. - mean) / std inp = inp.transpose(2, 0, 1)[np.newaxis, ...].astype(np.float32) inp = torch.from_numpy(inp).to(opt.device) out = model(inp)[-1] pred = get_preds(out['hm'].detach().cpu().numpy())[0] pred = transform_preds(pred, c, s, (opt.output_w, opt.output_h)) pred_3d = get_preds_3d(out['hm'].detach().cpu().numpy(), out['depth'].detach().cpu().numpy())[0] debugger = Debugger() debugger.add_img(image) debugger.add_point_2d(pred, (255, 0, 0)) debugger.add_point_3d(pred_3d, 'b') debugger.show_all_imgs(pause=False) debugger.show_3d()
Example #2
Source File: centernet_tensorrt_engine.py From centerpose with MIT License | 5 votes |
def multi_pose_post_process(self, dets, c, s, h, w): # dets: batch x max_dets x 40 # return list of 39 in image coord ret = [] for i in range(dets.shape[0]): bbox = transform_preds(dets[i, :, :4].reshape(-1, 2), c[i], s[i], (w, h)) pts = transform_preds(dets[i, :, 5:39].reshape(-1, 2), c[i], s[i], (w, h)) top_preds = np.concatenate( [bbox.reshape(-1, 4), dets[i, :, 4:5], pts.reshape(-1, 34), dets[i, :, 39:56]], axis=1).astype(np.float32).tolist() ret.append({np.ones(1, dtype=np.int32)[0]: top_preds}) return ret
Example #3
Source File: coco.py From pytorch-pose-hg-3d with GNU General Public License v3.0 | 5 votes |
def convert_eval_format(self, pred, conf, meta): preds = np.zeros((pred.shape[0], pred.shape[1], 2)) for i in range(pred.shape[0]): preds[i] = transform_preds( pred[i], meta['center'][i].numpy(), meta['scale'][i].numpy(), [self.opt.output_h, self.opt.output_w]) ret = [] for i in range(pred.shape[0]): kpts = np.concatenate([preds[i], conf[i]], axis=1).astype( np.int32).reshape(self.num_joints * 3).tolist() score = int(meta['score'][i]) ret.append({'category_id': 1, 'image_id': int(meta['image_id'].numpy()), \ 'keypoints': kpts, 'score': score}) return ret
Example #4
Source File: mpii.py From pytorch-pose-hg-3d with GNU General Public License v3.0 | 5 votes |
def convert_eval_format(self, pred, conf, meta): ret = np.zeros((pred.shape[0], pred.shape[1], 2)) for i in range(pred.shape[0]): ret[i] = transform_preds( pred[i], meta['center'][i].numpy(), meta['scale'][i].numpy(), [self.opt.output_h, self.opt.output_w]) return ret
Example #5
Source File: exdet.py From CenterNet-CondInst with MIT License | 5 votes |
def post_process(self, dets, meta, scale=1): out_width, out_height = meta['out_width'], meta['out_height'] dets = dets.detach().cpu().numpy().reshape(2, -1, 14) dets[1, :, [0, 2]] = out_width - dets[1, :, [2, 0]] dets = dets.reshape(1, -1, 14) dets[0, :, 0:2] = transform_preds( dets[0, :, 0:2], meta['c'], meta['s'], (out_width, out_height)) dets[0, :, 2:4] = transform_preds( dets[0, :, 2:4], meta['c'], meta['s'], (out_width, out_height)) dets[:, :, 0:4] /= scale return dets[0]
Example #6
Source File: exdet.py From centerNet-deep-sort with GNU General Public License v3.0 | 5 votes |
def post_process(self, dets, meta, scale=1): out_width, out_height = meta['out_width'], meta['out_height'] dets = dets.detach().cpu().numpy().reshape(2, -1, 14) dets[1, :, [0, 2]] = out_width - dets[1, :, [2, 0]] dets = dets.reshape(1, -1, 14) dets[0, :, 0:2] = transform_preds( dets[0, :, 0:2], meta['c'], meta['s'], (out_width, out_height)) dets[0, :, 2:4] = transform_preds( dets[0, :, 2:4], meta['c'], meta['s'], (out_width, out_height)) dets[:, :, 0:4] /= scale return dets[0]
Example #7
Source File: exdet.py From CenterNet with MIT License | 5 votes |
def post_process(self, dets, meta, scale=1): out_width, out_height = meta['out_width'], meta['out_height'] dets = dets.detach().cpu().numpy().reshape(2, -1, 14) dets[1, :, [0, 2]] = out_width - dets[1, :, [2, 0]] dets = dets.reshape(1, -1, 14) dets[0, :, 0:2] = transform_preds( dets[0, :, 0:2], meta['c'], meta['s'], (out_width, out_height)) dets[0, :, 2:4] = transform_preds( dets[0, :, 2:4], meta['c'], meta['s'], (out_width, out_height)) dets[:, :, 0:4] /= scale return dets[0]