Python utils.image.transform() Examples

The following are 4 code examples of utils.image.transform(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils.image , or try the search function .
Example #1
Source File: deform_conv_demo.py    From kaggle-rsna18 with MIT License 4 votes vote down vote up
def main():
    # get symbol
    pprint.pprint(config)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=False)

    # load demo data
    image_names = ['000240.jpg', '000437.jpg', '004072.jpg', '007912.jpg']
    image_all = []
    data = []
    for im_name in image_names:
        assert os.path.exists(cur_path + '/../demo/deform_conv/' + im_name), \
            ('%s does not exist'.format('../demo/deform_conv/' + im_name))
        im = cv2.imread(cur_path + '/../demo/deform_conv/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        image_all.append(im)
        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        im_info = np.array([[im_tensor.shape[2], im_tensor.shape[3], im_scale]], dtype=np.float32)
        data.append({'data': im_tensor, 'im_info': im_info})

    # get predictor
    data_names = ['data', 'im_info']
    label_names = []
    data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
    max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
    provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
    provide_label = [None for i in xrange(len(data))]
    arg_params, aux_params = load_param(cur_path + '/../model/deform_conv', 0, process=True)
    predictor = Predictor(sym, data_names, label_names,
                          context=[mx.gpu(0)], max_data_shapes=max_data_shape,
                          provide_data=provide_data, provide_label=provide_label,
                          arg_params=arg_params, aux_params=aux_params)

    # test
    for idx, _ in enumerate(image_names):
        data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
                                     provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
                                     provide_label=[None])

        output = predictor.predict(data_batch)
        res5a_offset = output[0]['res5a_branch2b_offset_output'].asnumpy()
        res5b_offset = output[0]['res5b_branch2b_offset_output'].asnumpy()
        res5c_offset = output[0]['res5c_branch2b_offset_output'].asnumpy()

        im = image_all[idx]
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        show_dconv_offset(im, [res5c_offset, res5b_offset, res5a_offset]) 
Example #2
Source File: deform_psroi_demo.py    From kaggle-rsna18 with MIT License 4 votes vote down vote up
def main():
    # get symbol
    pprint.pprint(config)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol_rfcn(config, is_train=False)

    # load demo data
    image_names = ['000057.jpg', '000149.jpg', '000351.jpg', '002535.jpg']
    image_all = []
    # ground truth boxes
    gt_boxes_all = [np.array([[132, 52, 384, 357]]), np.array([[113, 1, 350, 360]]),
                    np.array([[0, 27, 329, 155]]), np.array([[8, 40, 499, 289]])]
    gt_classes_all = [np.array([3]), np.array([16]), np.array([7]), np.array([12])]
    data = []
    for idx, im_name in enumerate(image_names):
        assert os.path.exists(cur_path + '/../demo/deform_psroi/' + im_name), \
            ('%s does not exist'.format('../demo/deform_psroi/' + im_name))
        im = cv2.imread(cur_path + '/../demo/deform_psroi/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        image_all.append(im)
        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        gt_boxes = gt_boxes_all[idx]
        gt_boxes = np.round(gt_boxes * im_scale)
        data.append({'data': im_tensor, 'rois': np.hstack((np.zeros((gt_boxes.shape[0], 1)), gt_boxes))})

    # get predictor
    data_names = ['data', 'rois']
    label_names = []
    data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
    max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
    provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
    provide_label = [None for i in xrange(len(data))]
    arg_params, aux_params = load_param(cur_path + '/../model/deform_psroi', 0, process=True)
    predictor = Predictor(sym, data_names, label_names,
                          context=[mx.gpu(0)], max_data_shapes=max_data_shape,
                          provide_data=provide_data, provide_label=provide_label,
                          arg_params=arg_params, aux_params=aux_params)

    # test
    for idx, _ in enumerate(image_names):
        data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
                                     provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
                                     provide_label=[None])

        output = predictor.predict(data_batch)
        cls_offset = output[0]['rfcn_cls_offset_output'].asnumpy()

        im = image_all[idx]
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        boxes = gt_boxes_all[idx]
        show_dpsroi_offset(im, boxes, cls_offset, gt_classes_all[idx]) 
Example #3
Source File: deform_conv_demo.py    From Deformable-ConvNets with MIT License 4 votes vote down vote up
def main():
    # get symbol
    pprint.pprint(config)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol(config, is_train=False)

    # load demo data
    image_names = ['000240.jpg', '000437.jpg', '004072.jpg', '007912.jpg']
    image_all = []
    data = []
    for im_name in image_names:
        assert os.path.exists(cur_path + '/../demo/deform_conv/' + im_name), \
            ('%s does not exist'.format('../demo/deform_conv/' + im_name))
        im = cv2.imread(cur_path + '/../demo/deform_conv/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        image_all.append(im)
        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        im_info = np.array([[im_tensor.shape[2], im_tensor.shape[3], im_scale]], dtype=np.float32)
        data.append({'data': im_tensor, 'im_info': im_info})

    # get predictor
    data_names = ['data', 'im_info']
    label_names = []
    data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
    max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
    provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
    provide_label = [None for i in xrange(len(data))]
    arg_params, aux_params = load_param(cur_path + '/../model/deform_conv', 0, process=True)
    predictor = Predictor(sym, data_names, label_names,
                          context=[mx.gpu(0)], max_data_shapes=max_data_shape,
                          provide_data=provide_data, provide_label=provide_label,
                          arg_params=arg_params, aux_params=aux_params)

    # test
    for idx, _ in enumerate(image_names):
        data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
                                     provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
                                     provide_label=[None])

        output = predictor.predict(data_batch)
        res5a_offset = output[0]['res5a_branch2b_offset_output'].asnumpy()
        res5b_offset = output[0]['res5b_branch2b_offset_output'].asnumpy()
        res5c_offset = output[0]['res5c_branch2b_offset_output'].asnumpy()

        im = image_all[idx]
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        show_dconv_offset(im, [res5c_offset, res5b_offset, res5a_offset]) 
Example #4
Source File: deform_psroi_demo.py    From Deformable-ConvNets with MIT License 4 votes vote down vote up
def main():
    # get symbol
    pprint.pprint(config)
    sym_instance = eval(config.symbol + '.' + config.symbol)()
    sym = sym_instance.get_symbol_rfcn(config, is_train=False)

    # load demo data
    image_names = ['000057.jpg', '000149.jpg', '000351.jpg', '002535.jpg']
    image_all = []
    # ground truth boxes
    gt_boxes_all = [np.array([[132, 52, 384, 357]]), np.array([[113, 1, 350, 360]]),
                    np.array([[0, 27, 329, 155]]), np.array([[8, 40, 499, 289]])]
    gt_classes_all = [np.array([3]), np.array([16]), np.array([7]), np.array([12])]
    data = []
    for idx, im_name in enumerate(image_names):
        assert os.path.exists(cur_path + '/../demo/deform_psroi/' + im_name), \
            ('%s does not exist'.format('../demo/deform_psroi/' + im_name))
        im = cv2.imread(cur_path + '/../demo/deform_psroi/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        image_all.append(im)
        target_size = config.SCALES[0][0]
        max_size = config.SCALES[0][1]
        im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE)
        im_tensor = transform(im, config.network.PIXEL_MEANS)
        gt_boxes = gt_boxes_all[idx]
        gt_boxes = np.round(gt_boxes * im_scale)
        data.append({'data': im_tensor, 'rois': np.hstack((np.zeros((gt_boxes.shape[0], 1)), gt_boxes))})

    # get predictor
    data_names = ['data', 'rois']
    label_names = []
    data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))]
    max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]]
    provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))]
    provide_label = [None for i in xrange(len(data))]
    arg_params, aux_params = load_param(cur_path + '/../model/deform_psroi', 0, process=True)
    predictor = Predictor(sym, data_names, label_names,
                          context=[mx.gpu(0)], max_data_shapes=max_data_shape,
                          provide_data=provide_data, provide_label=provide_label,
                          arg_params=arg_params, aux_params=aux_params)

    # test
    for idx, _ in enumerate(image_names):
        data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx,
                                     provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]],
                                     provide_label=[None])

        output = predictor.predict(data_batch)
        cls_offset = output[0]['rfcn_cls_offset_output'].asnumpy()

        im = image_all[idx]
        im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
        boxes = gt_boxes_all[idx]
        show_dpsroi_offset(im, boxes, cls_offset, gt_classes_all[idx])