Python utils.image.transform() Examples
The following are 4
code examples of utils.image.transform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.image
, or try the search function
.
Example #1
Source File: deform_conv_demo.py From kaggle-rsna18 with MIT License | 4 votes |
def main(): # get symbol pprint.pprint(config) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=False) # load demo data image_names = ['000240.jpg', '000437.jpg', '004072.jpg', '007912.jpg'] image_all = [] data = [] for im_name in image_names: assert os.path.exists(cur_path + '/../demo/deform_conv/' + im_name), \ ('%s does not exist'.format('../demo/deform_conv/' + im_name)) im = cv2.imread(cur_path + '/../demo/deform_conv/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) image_all.append(im) target_size = config.SCALES[0][0] max_size = config.SCALES[0][1] im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE) im_tensor = transform(im, config.network.PIXEL_MEANS) im_info = np.array([[im_tensor.shape[2], im_tensor.shape[3], im_scale]], dtype=np.float32) data.append({'data': im_tensor, 'im_info': im_info}) # get predictor data_names = ['data', 'im_info'] label_names = [] data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))] max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]] provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))] provide_label = [None for i in xrange(len(data))] arg_params, aux_params = load_param(cur_path + '/../model/deform_conv', 0, process=True) predictor = Predictor(sym, data_names, label_names, context=[mx.gpu(0)], max_data_shapes=max_data_shape, provide_data=provide_data, provide_label=provide_label, arg_params=arg_params, aux_params=aux_params) # test for idx, _ in enumerate(image_names): data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx, provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]], provide_label=[None]) output = predictor.predict(data_batch) res5a_offset = output[0]['res5a_branch2b_offset_output'].asnumpy() res5b_offset = output[0]['res5b_branch2b_offset_output'].asnumpy() res5c_offset = output[0]['res5c_branch2b_offset_output'].asnumpy() im = image_all[idx] im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) show_dconv_offset(im, [res5c_offset, res5b_offset, res5a_offset])
Example #2
Source File: deform_psroi_demo.py From kaggle-rsna18 with MIT License | 4 votes |
def main(): # get symbol pprint.pprint(config) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol_rfcn(config, is_train=False) # load demo data image_names = ['000057.jpg', '000149.jpg', '000351.jpg', '002535.jpg'] image_all = [] # ground truth boxes gt_boxes_all = [np.array([[132, 52, 384, 357]]), np.array([[113, 1, 350, 360]]), np.array([[0, 27, 329, 155]]), np.array([[8, 40, 499, 289]])] gt_classes_all = [np.array([3]), np.array([16]), np.array([7]), np.array([12])] data = [] for idx, im_name in enumerate(image_names): assert os.path.exists(cur_path + '/../demo/deform_psroi/' + im_name), \ ('%s does not exist'.format('../demo/deform_psroi/' + im_name)) im = cv2.imread(cur_path + '/../demo/deform_psroi/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) image_all.append(im) target_size = config.SCALES[0][0] max_size = config.SCALES[0][1] im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE) im_tensor = transform(im, config.network.PIXEL_MEANS) gt_boxes = gt_boxes_all[idx] gt_boxes = np.round(gt_boxes * im_scale) data.append({'data': im_tensor, 'rois': np.hstack((np.zeros((gt_boxes.shape[0], 1)), gt_boxes))}) # get predictor data_names = ['data', 'rois'] label_names = [] data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))] max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]] provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))] provide_label = [None for i in xrange(len(data))] arg_params, aux_params = load_param(cur_path + '/../model/deform_psroi', 0, process=True) predictor = Predictor(sym, data_names, label_names, context=[mx.gpu(0)], max_data_shapes=max_data_shape, provide_data=provide_data, provide_label=provide_label, arg_params=arg_params, aux_params=aux_params) # test for idx, _ in enumerate(image_names): data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx, provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]], provide_label=[None]) output = predictor.predict(data_batch) cls_offset = output[0]['rfcn_cls_offset_output'].asnumpy() im = image_all[idx] im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) boxes = gt_boxes_all[idx] show_dpsroi_offset(im, boxes, cls_offset, gt_classes_all[idx])
Example #3
Source File: deform_conv_demo.py From Deformable-ConvNets with MIT License | 4 votes |
def main(): # get symbol pprint.pprint(config) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol(config, is_train=False) # load demo data image_names = ['000240.jpg', '000437.jpg', '004072.jpg', '007912.jpg'] image_all = [] data = [] for im_name in image_names: assert os.path.exists(cur_path + '/../demo/deform_conv/' + im_name), \ ('%s does not exist'.format('../demo/deform_conv/' + im_name)) im = cv2.imread(cur_path + '/../demo/deform_conv/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) image_all.append(im) target_size = config.SCALES[0][0] max_size = config.SCALES[0][1] im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE) im_tensor = transform(im, config.network.PIXEL_MEANS) im_info = np.array([[im_tensor.shape[2], im_tensor.shape[3], im_scale]], dtype=np.float32) data.append({'data': im_tensor, 'im_info': im_info}) # get predictor data_names = ['data', 'im_info'] label_names = [] data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))] max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]] provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))] provide_label = [None for i in xrange(len(data))] arg_params, aux_params = load_param(cur_path + '/../model/deform_conv', 0, process=True) predictor = Predictor(sym, data_names, label_names, context=[mx.gpu(0)], max_data_shapes=max_data_shape, provide_data=provide_data, provide_label=provide_label, arg_params=arg_params, aux_params=aux_params) # test for idx, _ in enumerate(image_names): data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx, provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]], provide_label=[None]) output = predictor.predict(data_batch) res5a_offset = output[0]['res5a_branch2b_offset_output'].asnumpy() res5b_offset = output[0]['res5b_branch2b_offset_output'].asnumpy() res5c_offset = output[0]['res5c_branch2b_offset_output'].asnumpy() im = image_all[idx] im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) show_dconv_offset(im, [res5c_offset, res5b_offset, res5a_offset])
Example #4
Source File: deform_psroi_demo.py From Deformable-ConvNets with MIT License | 4 votes |
def main(): # get symbol pprint.pprint(config) sym_instance = eval(config.symbol + '.' + config.symbol)() sym = sym_instance.get_symbol_rfcn(config, is_train=False) # load demo data image_names = ['000057.jpg', '000149.jpg', '000351.jpg', '002535.jpg'] image_all = [] # ground truth boxes gt_boxes_all = [np.array([[132, 52, 384, 357]]), np.array([[113, 1, 350, 360]]), np.array([[0, 27, 329, 155]]), np.array([[8, 40, 499, 289]])] gt_classes_all = [np.array([3]), np.array([16]), np.array([7]), np.array([12])] data = [] for idx, im_name in enumerate(image_names): assert os.path.exists(cur_path + '/../demo/deform_psroi/' + im_name), \ ('%s does not exist'.format('../demo/deform_psroi/' + im_name)) im = cv2.imread(cur_path + '/../demo/deform_psroi/' + im_name, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) image_all.append(im) target_size = config.SCALES[0][0] max_size = config.SCALES[0][1] im, im_scale = resize(im, target_size, max_size, stride=config.network.IMAGE_STRIDE) im_tensor = transform(im, config.network.PIXEL_MEANS) gt_boxes = gt_boxes_all[idx] gt_boxes = np.round(gt_boxes * im_scale) data.append({'data': im_tensor, 'rois': np.hstack((np.zeros((gt_boxes.shape[0], 1)), gt_boxes))}) # get predictor data_names = ['data', 'rois'] label_names = [] data = [[mx.nd.array(data[i][name]) for name in data_names] for i in xrange(len(data))] max_data_shape = [[('data', (1, 3, max([v[0] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]] provide_data = [[(k, v.shape) for k, v in zip(data_names, data[i])] for i in xrange(len(data))] provide_label = [None for i in xrange(len(data))] arg_params, aux_params = load_param(cur_path + '/../model/deform_psroi', 0, process=True) predictor = Predictor(sym, data_names, label_names, context=[mx.gpu(0)], max_data_shapes=max_data_shape, provide_data=provide_data, provide_label=provide_label, arg_params=arg_params, aux_params=aux_params) # test for idx, _ in enumerate(image_names): data_batch = mx.io.DataBatch(data=[data[idx]], label=[], pad=0, index=idx, provide_data=[[(k, v.shape) for k, v in zip(data_names, data[idx])]], provide_label=[None]) output = predictor.predict(data_batch) cls_offset = output[0]['rfcn_cls_offset_output'].asnumpy() im = image_all[idx] im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) boxes = gt_boxes_all[idx] show_dpsroi_offset(im, boxes, cls_offset, gt_classes_all[idx])