Python utils.image.get_affine_transform() Examples
The following are 14
code examples of utils.image.get_affine_transform().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.image
, or try the search function
.
Example #1
Source File: convert2onnx.py From centerpose with MIT License | 6 votes |
def pre_process(image, cfg=None, scale=1, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) mean = np.array(cfg.DATASET.MEAN, dtype=np.float32).reshape(1, 1, 3) std = np.array(cfg.DATASET.STD, dtype=np.float32).reshape(1, 1, 3) inp_height, inp_width = cfg.MODEL.INPUT_H, cfg.MODEL.INPUT_W c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - mean) / std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // cfg.MODEL.DOWN_RATIO, 'out_width': inp_width // cfg.MODEL.DOWN_RATIO} return images, meta
Example #2
Source File: centernet_tensorrt_engine.py From centerpose with MIT License | 6 votes |
def preprocess(self, image, scale=1, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) mean = np.array(self.cfg.DATASET.MEAN, dtype=np.float32).reshape(1, 1, 3) std = np.array(self.cfg.DATASET.STD, dtype=np.float32).reshape(1, 1, 3) inp_height, inp_width = self.cfg.MODEL.INPUT_H, self.cfg.MODEL.INPUT_W c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - mean) / std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) meta = {'c': c, 's': s, 'out_height': inp_height // self.cfg.MODEL.DOWN_RATIO, 'out_width': inp_width // self.cfg.MODEL.DOWN_RATIO} return np.ascontiguousarray(images), meta
Example #3
Source File: ddd_detector.py From mxnet-centernet with MIT License | 6 votes |
def pre_process(self, image, scale, calib=None): height, width = image.shape[0:2] inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([width / 2, height / 2], dtype=np.float32) if self.opt.keep_res: s = np.array([inp_width, inp_height], dtype=np.int32) else: s = np.array([width, height], dtype=np.int32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = image #cv2.resize(image, (width, height)) inp_image = cv2.warpAffine(resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = (inp_image.astype(np.float32) / 255.) inp_image = (inp_image - self.mean) / self.std images = inp_image.transpose(2, 0, 1)[np.newaxis, ...] calib = np.array(calib, dtype=np.float32) if calib is not None else self.calib images = nd.array(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio, 'calib': calib} return images, meta
Example #4
Source File: demo.py From pytorch-pose-hg-3d with GNU General Public License v3.0 | 6 votes |
def demo_image(image, model, opt): s = max(image.shape[0], image.shape[1]) * 1.0 c = np.array([image.shape[1] / 2., image.shape[0] / 2.], dtype=np.float32) trans_input = get_affine_transform( c, s, 0, [opt.input_w, opt.input_h]) inp = cv2.warpAffine(image, trans_input, (opt.input_w, opt.input_h), flags=cv2.INTER_LINEAR) inp = (inp / 255. - mean) / std inp = inp.transpose(2, 0, 1)[np.newaxis, ...].astype(np.float32) inp = torch.from_numpy(inp).to(opt.device) out = model(inp)[-1] pred = get_preds(out['hm'].detach().cpu().numpy())[0] pred = transform_preds(pred, c, s, (opt.output_w, opt.output_h)) pred_3d = get_preds_3d(out['hm'].detach().cpu().numpy(), out['depth'].detach().cpu().numpy())[0] debugger = Debugger() debugger.add_img(image) debugger.add_point_2d(pred, (255, 0, 0)) debugger.add_point_3d(pred_3d, 'b') debugger.show_all_imgs(pause=False) debugger.show_3d()
Example #5
Source File: base_detector.py From centerpose with MIT License | 5 votes |
def pre_process(self, image, scale, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) if self.cfg.TEST.FIX_RES: inp_height, inp_width = self.cfg.MODEL.INPUT_H, self.cfg.MODEL.INPUT_W c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 else: inp_height = (new_height | self.cfg.MODEL.PAD) + 1 inp_width = (new_width | self.cfg.MODEL.PAD) + 1 c = np.array([new_width // 2, new_height // 2], dtype=np.float32) s = np.array([inp_width, inp_height], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) if self.cfg.TEST.FLIP_TEST: images = np.concatenate((images, images[:, :, :, ::-1]), axis=0) images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.cfg.MODEL.DOWN_RATIO, 'out_width': inp_width // self.cfg.MODEL.DOWN_RATIO} return images, meta
Example #6
Source File: base_detector.py From mxnet-centernet with MIT License | 5 votes |
def pre_process(self, image, scale, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) if self.opt.fix_res: inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 else: inp_height = (new_height | self.opt.pad) + 1 inp_width = (new_width | self.opt.pad) + 1 c = np.array([new_width // 2, new_height // 2], dtype=np.float32) s = np.array([inp_width, inp_height], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) if self.opt.flip_test: images = np.concatenate((images, images[:, :, :, ::-1]), axis=0) images = nd.array(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio} return images, meta
Example #7
Source File: ddd.py From CenterNet-CondInst with MIT License | 5 votes |
def pre_process(self, image, scale, calib=None): height, width = image.shape[0:2] inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([width / 2, height / 2], dtype=np.float32) if self.opt.keep_res: s = np.array([inp_width, inp_height], dtype=np.int32) else: s = np.array([width, height], dtype=np.int32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = image #cv2.resize(image, (width, height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = (inp_image.astype(np.float32) / 255.) inp_image = (inp_image - self.mean) / self.std images = inp_image.transpose(2, 0, 1)[np.newaxis, ...] calib = np.array(calib, dtype=np.float32) if calib is not None \ else self.calib images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio, 'calib': calib} return images, meta
Example #8
Source File: base_detector.py From CenterNet-CondInst with MIT License | 5 votes |
def pre_process(self, image, scale, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) if self.opt.fix_res: inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 else: inp_height = (new_height | self.opt.pad) + 1 inp_width = (new_width | self.opt.pad) + 1 c = np.array([new_width // 2, new_height // 2], dtype=np.float32) s = np.array([inp_width, inp_height], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) if self.opt.flip_test: images = np.concatenate((images, images[:, :, :, ::-1]), axis=0) images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio} return images, meta
Example #9
Source File: ddd.py From centerNet-deep-sort with GNU General Public License v3.0 | 5 votes |
def pre_process(self, image, scale, calib=None): height, width = image.shape[0:2] inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([width / 2, height / 2], dtype=np.float32) if self.opt.keep_res: s = np.array([inp_width, inp_height], dtype=np.int32) else: s = np.array([width, height], dtype=np.int32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = image #cv2.resize(image, (width, height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = (inp_image.astype(np.float32) / 255.) inp_image = (inp_image - self.mean) / self.std images = inp_image.transpose(2, 0, 1)[np.newaxis, ...] calib = np.array(calib, dtype=np.float32) if calib is not None \ else self.calib images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio, 'calib': calib} return images, meta
Example #10
Source File: base_detector.py From centerNet-deep-sort with GNU General Public License v3.0 | 5 votes |
def pre_process(self, image, scale, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) if self.opt.fix_res: inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 else: inp_height = (new_height | self.opt.pad) + 1 inp_width = (new_width | self.opt.pad) + 1 c = np.array([new_width // 2, new_height // 2], dtype=np.float32) s = np.array([inp_width, inp_height], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) if self.opt.flip_test: images = np.concatenate((images, images[:, :, :, ::-1]), axis=0) images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio} return images, meta
Example #11
Source File: ddd.py From CenterNet with MIT License | 5 votes |
def pre_process(self, image, scale, calib=None): height, width = image.shape[0:2] inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([width / 2, height / 2], dtype=np.float32) if self.opt.keep_res: s = np.array([inp_width, inp_height], dtype=np.int32) else: s = np.array([width, height], dtype=np.int32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = image #cv2.resize(image, (width, height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = (inp_image.astype(np.float32) / 255.) inp_image = (inp_image - self.mean) / self.std images = inp_image.transpose(2, 0, 1)[np.newaxis, ...] calib = np.array(calib, dtype=np.float32) if calib is not None \ else self.calib images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio, 'calib': calib} return images, meta
Example #12
Source File: base_detector.py From CenterNet with MIT License | 5 votes |
def pre_process(self, image, scale, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) if self.opt.fix_res: inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 else: inp_height = (new_height | self.opt.pad) + 1 inp_width = (new_width | self.opt.pad) + 1 c = np.array([new_width // 2, new_height // 2], dtype=np.float32) s = np.array([inp_width, inp_height], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) if self.opt.flip_test: images = np.concatenate((images, images[:, :, :, ::-1]), axis=0) images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio} return images, meta
Example #13
Source File: h36m_iccv.py From pytorch-pose-hg-3d with GNU General Public License v3.0 | 4 votes |
def __getitem__(self, index): if index < 10 and self.split == 'train': self.idxs = np.random.choice( self.num_samples, self.num_samples, replace=False) img = self._load_image(index) gt_3d, pts, c, s = self._get_part_info(index) r = 0 s = np.array([s, s]) s = adjust_aspect_ratio(s, self.aspect_ratio, self.opt.fit_short_side) trans_input = get_affine_transform( c, s, r, [self.opt.input_h, self.opt.input_w]) inp = cv2.warpAffine(img, trans_input, (self.opt.input_h, self.opt.input_w), flags=cv2.INTER_LINEAR) inp = (inp.astype(np.float32) / 256. - self.mean) / self.std inp = inp.transpose(2, 0, 1) trans_output = get_affine_transform( c, s, r, [self.opt.output_h, self.opt.output_w]) out = np.zeros((self.num_joints, self.opt.output_h, self.opt.output_w), dtype=np.float32) reg_target = np.zeros((self.num_joints, 1), dtype=np.float32) reg_ind = np.zeros((self.num_joints), dtype=np.int64) reg_mask = np.zeros((self.num_joints), dtype=np.uint8) pts_crop = np.zeros((self.num_joints, 2), dtype=np.int32) for i in range(self.num_joints): pt = affine_transform(pts[i, :2], trans_output).astype(np.int32) if pt[0] >= 0 and pt[1] >=0 and pt[0] < self.opt.output_w \ and pt[1] < self.opt.output_h: pts_crop[i] = pt out[i] = draw_gaussian(out[i], pt, self.opt.hm_gauss) reg_target[i] = pts[i, 2] / s[0] # assert not fit_short reg_ind[i] = pt[1] * self.opt.output_w * self.num_joints + \ pt[0] * self.num_joints + i # note transposed reg_mask[i] = 1 meta = {'index' : self.idxs[index], 'center' : c, 'scale' : s, 'gt_3d': gt_3d, 'pts_crop': pts_crop} ret = {'input': inp, 'target': out, 'meta': meta, 'reg_target': reg_target, 'reg_ind': reg_ind, 'reg_mask': reg_mask} return ret
Example #14
Source File: mpii.py From pytorch-pose-hg-3d with GNU General Public License v3.0 | 4 votes |
def __getitem__(self, index): img = self._load_image(index) _, pts, c, s = self._get_part_info(index) r = 0 if self.split == 'train': sf = self.opt.scale rf = self.opt.rotate s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf) r = np.clip(np.random.randn()*rf, -rf*2, rf*2) \ if np.random.random() <= 0.6 else 0 s = min(s, max(img.shape[0], img.shape[1])) * 1.0 s = np.array([s, s]) s = adjust_aspect_ratio(s, self.aspect_ratio, self.opt.fit_short_side) flipped = (self.split == 'train' and np.random.random() < self.opt.flip) if flipped: img = img[:, ::-1, :] c[0] = img.shape[1] - 1 - c[0] pts[:, 0] = img.shape[1] - 1 - pts[:, 0] for e in self.shuffle_ref: pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy() trans_input = get_affine_transform( c, s, r, [self.opt.input_h, self.opt.input_w]) inp = cv2.warpAffine(img, trans_input, (self.opt.input_h, self.opt.input_w), flags=cv2.INTER_LINEAR) inp = (inp.astype(np.float32) / 256. - self.mean) / self.std inp = inp.transpose(2, 0, 1) trans_output = get_affine_transform( c, s, r, [self.opt.output_h, self.opt.output_w]) out = np.zeros((self.num_joints, self.opt.output_h, self.opt.output_w), dtype=np.float32) pts_crop = np.zeros((self.num_joints, 2), dtype=np.int32) for i in range(self.num_joints): if pts[i, 0] > 0 or pts[i, 1] > 0: pts_crop[i] = affine_transform(pts[i], trans_output) out[i] = draw_gaussian(out[i], pts_crop[i], self.opt.hm_gauss) meta = {'index' : index, 'center' : c, 'scale' : s, \ 'pts_crop': pts_crop} return {'input': inp, 'target': out, 'meta': meta}