Python utils.image.get_segmentation_image() Examples
The following are 12
code examples of utils.image.get_segmentation_image().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils.image
, or try the search function
.
Example #1
Source File: segmentation.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def get_segmentation_test_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs im_info = [np.array([segdb[i]['im_info']], dtype=np.float32) for i in xrange(len(segdb))] data = [{'data': im_array[i], 'im_info': im_info[i]} for i in xrange(len(segdb))] label = [{'label':seg_cls_gts[i]} for i in xrange(len(segdb))] return data, label, im_info
Example #2
Source File: segmentation.py From Deep-Feature-Flow-Segmentation with MIT License | 6 votes |
def get_segmentation_train_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ # assert len(segdb) == 1, 'Single batch only' assert len(segdb) == 1, 'Single batch only' imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs[0] seg_cls_gt = seg_cls_gts[0] im_info = np.array([segdb[0]['im_info']], dtype=np.float32) data = {'data': im_array, 'im_info': im_info} label = {'label': seg_cls_gt} return data, label
Example #3
Source File: segmentation.py From kaggle-rsna18 with MIT License | 6 votes |
def get_segmentation_test_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs im_info = [np.array([segdb[i]['im_info']], dtype=np.float32) for i in xrange(len(segdb))] data = [{'data': im_array[i], 'im_info': im_info[i]} for i in xrange(len(segdb))] label = [{'label':seg_cls_gts[i]} for i in xrange(len(segdb))] return data, label, im_info
Example #4
Source File: segmentation.py From kaggle-rsna18 with MIT License | 6 votes |
def get_segmentation_train_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ # assert len(segdb) == 1, 'Single batch only' assert len(segdb) == 1, 'Single batch only' imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs[0] seg_cls_gt = seg_cls_gts[0] im_info = np.array([segdb[0]['im_info']], dtype=np.float32) data = {'data': im_array, 'im_info': im_info} label = {'label': seg_cls_gt} return data, label
Example #5
Source File: segmentation.py From Deformable-ConvNets with MIT License | 6 votes |
def get_segmentation_test_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs im_info = [np.array([segdb[i]['im_info']], dtype=np.float32) for i in xrange(len(segdb))] data = [{'data': im_array[i], 'im_info': im_info[i]} for i in xrange(len(segdb))] label = [{'label':seg_cls_gts[i]} for i in xrange(len(segdb))] return data, label, im_info
Example #6
Source File: segmentation.py From Deformable-ConvNets with MIT License | 6 votes |
def get_segmentation_train_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ # assert len(segdb) == 1, 'Single batch only' assert len(segdb) == 1, 'Single batch only' imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs[0] seg_cls_gt = seg_cls_gts[0] im_info = np.array([segdb[0]['im_info']], dtype=np.float32) data = {'data': im_array, 'im_info': im_info} label = {'label': seg_cls_gt} return data, label
Example #7
Source File: segmentation.py From RoITransformer_DOTA with MIT License | 6 votes |
def get_segmentation_test_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs im_info = [np.array([segdb[i]['im_info']], dtype=np.float32) for i in xrange(len(segdb))] data = [{'data': im_array[i], 'im_info': im_info[i]} for i in xrange(len(segdb))] label = [{'label':seg_cls_gts[i]} for i in xrange(len(segdb))] return data, label, im_info
Example #8
Source File: segmentation.py From RoITransformer_DOTA with MIT License | 6 votes |
def get_segmentation_train_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ # assert len(segdb) == 1, 'Single batch only' assert len(segdb) == 1, 'Single batch only' imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs[0] seg_cls_gt = seg_cls_gts[0] im_info = np.array([segdb[0]['im_info']], dtype=np.float32) data = {'data': im_array, 'im_info': im_info} label = {'label': seg_cls_gt} return data, label
Example #9
Source File: segmentation.py From Faster_RCNN_for_DOTA with Apache License 2.0 | 6 votes |
def get_segmentation_test_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs im_info = [np.array([segdb[i]['im_info']], dtype=np.float32) for i in xrange(len(segdb))] data = [{'data': im_array[i], 'im_info': im_info[i]} for i in xrange(len(segdb))] label = [{'label':seg_cls_gts[i]} for i in xrange(len(segdb))] return data, label, im_info
Example #10
Source File: segmentation.py From Faster_RCNN_for_DOTA with Apache License 2.0 | 6 votes |
def get_segmentation_train_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ # assert len(segdb) == 1, 'Single batch only' assert len(segdb) == 1, 'Single batch only' imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs[0] seg_cls_gt = seg_cls_gts[0] im_info = np.array([segdb[0]['im_info']], dtype=np.float32) data = {'data': im_array, 'im_info': im_info} label = {'label': seg_cls_gt} return data, label
Example #11
Source File: segmentation.py From Decoupled-Classification-Refinement with MIT License | 6 votes |
def get_segmentation_test_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs im_info = [np.array([segdb[i]['im_info']], dtype=np.float32) for i in xrange(len(segdb))] data = [{'data': im_array[i], 'im_info': im_info[i]} for i in xrange(len(segdb))] label = [{'label':seg_cls_gts[i]} for i in xrange(len(segdb))] return data, label, im_info
Example #12
Source File: segmentation.py From Decoupled-Classification-Refinement with MIT License | 6 votes |
def get_segmentation_train_batch(segdb, config): """ return a dict of train batch :param segdb: ['image', 'flipped'] :param config: the config setting :return: data, label, im_info """ # assert len(segdb) == 1, 'Single batch only' assert len(segdb) == 1, 'Single batch only' imgs, seg_cls_gts, segdb = get_segmentation_image(segdb, config) im_array = imgs[0] seg_cls_gt = seg_cls_gts[0] im_info = np.array([segdb[0]['im_info']], dtype=np.float32) data = {'data': im_array, 'im_info': im_info} label = {'label': seg_cls_gt} return data, label