Python absl.logging.getLogger() Examples

The following are 7 code examples of absl.logging.getLogger(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module absl.logging , or try the search function .
Example #1
Source File: program.py    From tensorboard with Apache License 2.0 6 votes vote down vote up
def _fix_werkzeug_logging(self):
        """Fix werkzeug logging setup so it inherits TensorBoard's log level.

        This addresses a change in werkzeug 0.15.0+ [1] that causes it set its own
        log level to INFO regardless of the root logger configuration. We instead
        want werkzeug to inherit TensorBoard's root logger log level (set via absl
        to WARNING by default).

        [1]: https://github.com/pallets/werkzeug/commit/4cf77d25858ff46ac7e9d64ade054bf05b41ce12
        """
        # Log once at DEBUG to force werkzeug to initialize its singleton logger,
        # which sets the logger level to INFO it if is unset, and then access that
        # object via logging.getLogger('werkzeug') to durably revert the level to
        # unset (and thus make messages logged to it inherit the root logger level).
        self.log(
            "debug", "Fixing werkzeug logger to inherit TensorBoard log level"
        )
        logging.getLogger("werkzeug").setLevel(logging.NOTSET) 
Example #2
Source File: base_learner.py    From deep-smoke-machine with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def create_logger(self, log_path=None):
        if log_path is None:
            return None
        check_and_create_dir(log_path)
        handler = logging.handlers.RotatingFileHandler(log_path, mode="a", maxBytes=100000000, backupCount=200)
        logging.root.removeHandler(absl.logging._absl_handler) # this removes duplicated logging
        absl.logging._warn_preinit_stderr = False # this removes duplicated logging
        formatter = RequestFormatter("[%(asctime)s] %(levelname)s: %(message)s")
        handler.setFormatter(formatter)
        logger = logging.getLogger(log_path)
        logger.setLevel(logging.INFO)
        for hdlr in logger.handlers[:]:
            logger.removeHandler(hdlr) # remove old handlers
        logger.addHandler(handler)
        self.logger = logger 
Example #3
Source File: ncf_common.py    From models with Apache License 2.0 5 votes vote down vote up
def get_v1_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)

    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )

    logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())

    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)

    distribution = tf.distribute.experimental.TPUStrategy(
        tpu_cluster_resolver, steps_per_run=100)

  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])

  return distribution 
Example #4
Source File: log.py    From reinvent-randomized with MIT License 5 votes vote down vote up
def get_logger(name, level=logging.INFO, with_tqdm=True):
    if with_tqdm:
        handler = TQDMHandler()
    else:
        handler = logging.StreamHandler(stream=sys.stderr)
    formatter = logging.Formatter(
        fmt="%(asctime)s: %(module)s.%(funcName)s +%(lineno)s: %(levelname)-8s %(message)s",
        datefmt="%H:%M:%S"
    )
    handler.setFormatter(formatter)

    logger = logging.getLogger(name)
    logger.setLevel(level)
    logger.addHandler(handler)
    return logger 
Example #5
Source File: __init__.py    From abseil-py with Apache License 2.0 5 votes vote down vote up
def _initialize():
  """Initializes loggers and handlers."""
  global _absl_logger, _absl_handler

  if _absl_logger:
    return

  original_logger_class = logging.getLoggerClass()
  logging.setLoggerClass(ABSLLogger)
  _absl_logger = logging.getLogger('absl')
  logging.setLoggerClass(original_logger_class)

  python_logging_formatter = PythonFormatter()
  _absl_handler = ABSLHandler(python_logging_formatter) 
Example #6
Source File: ncf_common.py    From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 5 votes vote down vote up
def get_v1_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)

    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )

    logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())

    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)

    distribution = tf.distribute.experimental.TPUStrategy(
        tpu_cluster_resolver, steps_per_run=100)

  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])

  return distribution 
Example #7
Source File: ncf_common.py    From models with Apache License 2.0 5 votes vote down vote up
def get_v1_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)

    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )

    logging.info("Issuing reset command to TPU to ensure a clean state.")
    tf.Session.reset(tpu_cluster_resolver.get_master())

    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
    os.environ["TF_CONFIG"] = json.dumps(tf_config_env)

    distribution = tf.distribute.experimental.TPUStrategy(
        tpu_cluster_resolver, steps_per_run=100)

  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])

  return distribution