Python tensorflow.keras.callbacks.TensorBoard() Examples
The following are 3
code examples of tensorflow.keras.callbacks.TensorBoard().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.callbacks
, or try the search function
.
Example #1
Source File: tcn.py From TF.Keras-Commonly-used-models with Apache License 2.0 | 6 votes |
def train(): depth = 6 filters = 25 block_filters = [filters] * depth print(block_filters) model = build_model(sequence_length=28 * 28, channels=1, num_classes=10, filters=block_filters, kernel_size=8) model.compile(optimizer="Adam", metrics=[metrics.SparseCategoricalAccuracy()], loss=losses.SparseCategoricalCrossentropy()) print(model.summary()) #train_dataset, test_dataset = load_dataset() """ model.fit(train_dataset.batch(32), validation_data=test_dataset.batch(32), callbacks=[TensorBoard(str(Path("logs") / datetime.now().strftime("%Y-%m-%dT%H-%M_%S")))], epochs=10) """
Example #2
Source File: siamese_similarity.py From nlp-journey with Apache License 2.0 | 5 votes |
def train(self, weights_only=True, call_back=False): model = self._build_model() if call_back: early_stopping = EarlyStopping(monitor='val_loss', patience=30) stamp = 'lstm_%d' % self.n_hidden checkpoint_dir = os.path.join( self.model_path, 'checkpoints/' + str(int(time.time())) + '/') if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) bst_model_path = checkpoint_dir + stamp + '.h5' if weights_only: model_checkpoint = ModelCheckpoint( bst_model_path, save_best_only=True, save_weights_only=True) else: model_checkpoint = ModelCheckpoint( bst_model_path, save_best_only=True) tensor_board = TensorBoard( log_dir=checkpoint_dir + "logs/{}".format(time.time())) callbacks = [early_stopping, model_checkpoint, tensor_board] else: callbacks = None model_trained = model.fit([self.x_train['left'], self.x_train['right']], self.y_train, batch_size=self.batch_size, epochs=self.epochs, validation_data=([self.x_val['left'], self.x_val['right']], self.y_val), verbose=1, callbacks=callbacks) if weights_only and not call_back: model.save_weights(os.path.join(self.model_path, 'weights_only.h5')) elif not weights_only and not call_back: model.save(os.path.join(self.model_path, 'model.h5')) self._save_config() plot(model_trained) return model
Example #3
Source File: train.py From keras-mobile-detectnet with MIT License | 4 votes |
def main(batch_size: int = 24, epochs: int = 384, train_path: str = 'train', val_path: str = 'val', weights=None, workers: int = 8): # We use an extra input during training to discount bounding box loss when a class is not present in an image. discount_input = Input(shape=(7, 7), name='discount') keras_model = MobileDetectNetModel.complete_model(extra_inputs=[discount_input]) keras_model.summary() if weights is not None: keras_model.load_weights(weights, by_name=True) train_seq = MobileDetectNetSequence(train_path, stage="train", batch_size=batch_size) val_seq = MobileDetectNetSequence(val_path, stage="val", batch_size=batch_size) callbacks = [] def region_loss(classes): def loss_fn(y_true, y_pred): # Don't penalize bounding box errors when there is no object present return 10 * (classes * K.abs(y_pred[:, :, :, 0] - y_true[:, :, :, 0]) + classes * K.abs(y_pred[:, :, :, 1] - y_true[:, :, :, 1]) + classes * K.abs(y_pred[:, :, :, 2] - y_true[:, :, :, 2]) + classes * K.abs(y_pred[:, :, :, 3] - y_true[:, :, :, 3])) return loss_fn keras_model.compile(optimizer=Nadam(lr=0.001), loss=['mean_absolute_error', region_loss(discount_input), 'binary_crossentropy']) filepath = "weights-{epoch:02d}-{val_loss:.4f}-multi-gpu.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') callbacks.append(checkpoint) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=0.00001, verbose=1) callbacks.append(reduce_lr) try: os.mkdir('logs') except FileExistsError: pass tensorboard = TensorBoard(log_dir='logs/%s' % time.strftime("%Y-%m-%d_%H-%M-%S")) callbacks.append(tensorboard) keras_model.fit_generator(train_seq, validation_data=val_seq, epochs=epochs, steps_per_epoch=np.ceil(len(train_seq) / batch_size), validation_steps=np.ceil(len(val_seq) / batch_size), callbacks=callbacks, use_multiprocessing=True, workers=workers, shuffle=True)