Python numpy.random.get_state() Examples
The following are 10
code examples of numpy.random.get_state().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: gpeiopt_chooser.py From Milano with Apache License 2.0 | 6 votes |
def _real_init(self, dims, values): self.randomstate = npr.get_state() # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values)+1e-4 # Initial observation noise. self.noise = 1e-3 # Initial mean. self.mean = np.mean(values) # Save hyperparameter samples self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls))
Example #2
Source File: gpei_constrained_chooser.py From Milano with Apache License 2.0 | 5 votes |
def _real_init(self, dims, values, durations): self.randomstate = npr.get_state() # Identify constraint violations # Note that we'll treat NaNs and Infs as these values as well # as an optional user defined value goodvals = np.nonzero(np.logical_and(values != self.bad_value, np.isfinite(values)))[0] # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) self.constraint_ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values[goodvals])+1e-4 self.constraint_amp2 = 1.0 # Initial observation noise. self.noise = 1e-3 self.constraint_noise = 1e-3 self.constraint_gain = 1 # Initial mean. self.mean = np.mean(values[goodvals]) self.constraint_mean = 0.5
Example #3
Source File: RandomProposer.py From auptimizer with GNU General Public License v3.0 | 5 votes |
def save(self, path): del self.params_gen self.random_state = random.get_state() super(RandomProposer, self).save(path)
Example #4
Source File: GPEIOptChooser.py From auptimizer with GNU General Public License v3.0 | 5 votes |
def _real_init(self, dims, values): self.locker.lock_wait(self.state_pkl) self.randomstate = npr.get_state() if os.path.exists(self.state_pkl): fh = open(self.state_pkl, 'r') state = pickle.load(fh) fh.close() self.D = state['dims'] self.ls = state['ls'] self.amp2 = state['amp2'] self.noise = state['noise'] self.mean = state['mean'] self.hyper_samples = state['hyper_samples'] self.needs_burnin = False else: # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values)+1e-4 # Initial observation noise. self.noise = 1e-3 # Initial mean. self.mean = np.mean(values) # Save hyperparameter samples self.hyper_samples.append((self.mean, self.noise, self.amp2, self.ls)) self.locker.unlock(self.state_pkl)
Example #5
Source File: test_algebraic_connectivity.py From qgisSpaceSyntaxToolkit with GNU General Public License v3.0 | 5 votes |
def save_random_state(): state = get_state() try: yield finally: set_state(state)
Example #6
Source File: misc.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __enter__(self): from numpy import random self.startstate = random.get_state() random.seed(self.seed)
Example #7
Source File: test_parser.py From streaming-form-data with MIT License | 5 votes |
def local_seed(seed): state = random.get_state() try: random.seed(seed) yield finally: random.set_state(state)
Example #8
Source File: test_algebraic_connectivity.py From aws-kube-codesuite with Apache License 2.0 | 5 votes |
def save_random_state(): state = get_state() try: yield finally: set_state(state)
Example #9
Source File: GPConstrainedEIChooser.py From auptimizer with GNU General Public License v3.0 | 4 votes |
def _real_init(self, dims, values, durations): self.locker.lock_wait(self.state_pkl) self.randomstate = npr.get_state() if os.path.exists(self.state_pkl): fh = open(self.state_pkl, 'rb') state = pickle.load(fh) fh.close() self.D = state['dims'] self.ls = state['ls'] self.amp2 = state['amp2'] self.noise = state['noise'] self.mean = state['mean'] self.constraint_ls = state['constraint_ls'] self.constraint_amp2 = state['constraint_amp2'] self.constraint_noise = state['constraint_noise'] self.constraint_mean = state['constraint_mean'] self.constraint_gain = state['constraint_gain'] self.needs_burnin = False else: # Identify constraint violations # Note that we'll treat NaNs and Infs as these values as well # as an optional user defined value goodvals = np.nonzero(np.logical_and(values != self.bad_value, np.isfinite(values)))[0] # Input dimensionality. self.D = dims # Initial length scales. self.ls = np.ones(self.D) self.constraint_ls = np.ones(self.D) # Initial amplitude. self.amp2 = np.std(values[goodvals])+1e-4 self.constraint_amp2 = 1.0 # Initial observation noise. self.noise = 1e-3 self.constraint_noise = 1e-3 self.constraint_gain = 1 # Initial mean. self.mean = np.mean(values[goodvals]) self.constraint_mean = 0.5 self.locker.unlock(self.state_pkl)
Example #10
Source File: decorators.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def preserve_random_state(func): """ Decorator to preserve the numpy.random state during a function. Parameters ---------- func : function function around which to preserve the random state. Returns ------- wrapper : function Function which wraps the input function by saving the state before calling the function and restoring the function afterward. Examples -------- Decorate functions like this:: @preserve_random_state def do_random_stuff(x, y): return x + y * numpy.random.random() Notes ----- If numpy.random is not importable, the state is not saved or restored. """ try: from numpy.random import get_state, seed, set_state @contextmanager def save_random_state(): state = get_state() try: yield finally: set_state(state) def wrapper(*args, **kwargs): with save_random_state(): seed(1234567890) return func(*args, **kwargs) wrapper.__name__ = func.__name__ return wrapper except ImportError: return func