Python tensorflow.contrib.seq2seq.TrainingHelper() Examples
The following are 8
code examples of tensorflow.contrib.seq2seq.TrainingHelper().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.seq2seq
, or try the search function
.
Example #1
Source File: seq2seq_decoder_estimator.py From icecaps with MIT License | 6 votes |
def build_train_decoder(self): with tf.name_scope('train_decoder'): training_helper = TrainingHelper(inputs=self.inputs_dense, sequence_length=self.inputs_length, time_major=False, name='training_helper') with tf.name_scope('basic_decoder'): training_decoder = BasicDecoder(cell=self.cell, helper=training_helper, initial_state=self.initial_state, output_layer=self.output_layer) with tf.name_scope('dynamic_decode'): (outputs, self.last_state, self.outputs_length) = (seq2seq.dynamic_decode( decoder=training_decoder, output_time_major=False, impute_finished=True, maximum_iterations=self.inputs_max_length)) self.logits = tf.identity(outputs.rnn_output) self.log_probs = tf.nn.log_softmax(self.logits) self.gs_hypotheses = tf.argmax(self.log_probs, -1)
Example #2
Source File: lm.py From avsr-tf1 with GNU General Public License v3.0 | 5 votes |
def _build_decoder_train(self): self._decoder_train_inputs = tf.nn.embedding_lookup(self._embedding_matrix, self._labels_padded_GO) if self._mode == 'train': sampler = seq2seq.ScheduledEmbeddingTrainingHelper( inputs=self._decoder_train_inputs, sequence_length=self._labels_length, embedding=self._embedding_matrix, sampling_probability=self._sampling_probability_outputs, ) else: sampler = seq2seq.TrainingHelper( inputs=self._decoder_train_inputs, sequence_length=self._labels_length, ) cells = self._decoder_cells decoder_train = seq2seq.BasicDecoder( cell=cells, helper=sampler, initial_state=self._decoder_initial_state, output_layer=self._dense_layer, ) outputs, _, _ = seq2seq.dynamic_decode( decoder_train, output_time_major=False, impute_finished=True, swap_memory=False, ) logits = outputs.rnn_output self.decoder_train_outputs = logits self.average_log_likelihoods = self._compute_likelihood(logits) print('')
Example #3
Source File: attention_predictor.py From aster with MIT License | 5 votes |
def _build_decoder(self, decoder_cell, batch_size): embedding_fn = functools.partial(tf.one_hot, depth=self.num_classes) output_layer = tf.layers.Dense( self.num_classes, activation=None, use_bias=True, kernel_initializer=tf.variance_scaling_initializer(), bias_initializer=tf.zeros_initializer()) if self._is_training: train_helper = seq2seq.TrainingHelper( embedding_fn(self._groundtruth_dict['decoder_inputs']), sequence_length=self._groundtruth_dict['decoder_lengths'], time_major=False) decoder = seq2seq.BasicDecoder( cell=decoder_cell, helper=train_helper, initial_state=decoder_cell.zero_state(batch_size, tf.float32), output_layer=output_layer) else: decoder = seq2seq.BeamSearchDecoder( cell=decoder_cell, embedding=embedding_fn, start_tokens=tf.fill([batch_size], self.start_label), end_token=self.end_label, initial_state=decoder_cell.zero_state(batch_size * self._beam_width, tf.float32), beam_width=self._beam_width, output_layer=output_layer, length_penalty_weight=0.0) return decoder
Example #4
Source File: helpers.py From language with Apache License 2.0 | 5 votes |
def next_inputs(self, time, outputs, state, sample_ids, name=None): """Compute the next inputs and state.""" del sample_ids # Unused. with tf.name_scope(name, "ScheduledContinuousEmbeddingNextInputs", [time, outputs, state]): # Get ground truth next inputs. (finished, base_next_inputs, state) = contrib_seq2seq.TrainingHelper.next_inputs( self, time, outputs, state, name=name) # Get generated next inputs. all_finished = tf.reduce_all(finished) generated_next_inputs = tf.cond( all_finished, # If we're finished, the next_inputs value doesn't matter lambda: outputs, lambda: outputs) # Sample mixing weights. weight_sampler = tf.distributions.Dirichlet( concentration=self._mixing_concentration) weight = weight_sampler.sample( sample_shape=self.batch_size, seed=self._scheduling_seed) alpha, beta = weight, 1 - weight # Mix the inputs. next_inputs = alpha * base_next_inputs + beta * generated_next_inputs return finished, next_inputs, state
Example #5
Source File: seq2seq_decoder_estimator.py From icecaps with MIT License | 5 votes |
def build_mmi_decoder(self): with tf.name_scope('mmi_scorer'): training_helper = TrainingHelper(inputs=self.inputs_dense, sequence_length=self.inputs_length, time_major=False, name='mmi_training_helper') with tf.name_scope('mmi_basic_decoder'): training_decoder = MMIDecoder(cell=self.cell, helper=training_helper, initial_state=self.initial_state, output_layer=self.output_layer) with tf.name_scope('mmi_dynamic_decoder'): (outputs, self.last_state, self.outputs_length) = seq2seq.dynamic_decode( decoder=training_decoder, output_time_major=False, impute_finished=True, maximum_iterations=self.inputs_max_length) self.scores_raw = tf.identity( tf.transpose(outputs.scores, [1, 2, 0])) targets = self.features["targets"] targets = tf.cast(targets, dtype=tf.int32) target_len = tf.cast(tf.count_nonzero( targets - self.vocab.end_token_id, -1), dtype=tf.int32) max_target_len = tf.reduce_max(target_len) pruned_targets = tf.slice(targets, [0, 0], [-1, max_target_len]) index = (tf.range(0, max_target_len, 1)) * \ tf.ones(shape=[self.batch_size, 1], dtype=tf.int32) row_no = tf.transpose(tf.range( 0, self.batch_size, 1) * tf.ones(shape=(max_target_len, 1), dtype=tf.int32)) indices = tf.stack([index, pruned_targets, row_no], axis=2) # Retrieve scores corresponding to indices batch_scores = tf.gather_nd(self.scores_raw, indices) self.mmi_scores = tf.reduce_sum(batch_scores, axis=1)
Example #6
Source File: seq2seq.py From retrosynthesis_planner with GNU General Public License v3.0 | 4 votes |
def _make_train(self, decoder_cell, decoder_initial_state): # Assume 0 is the START token start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32) y = tf.concat([tf.expand_dims(start_tokens, 1), self.y], 1) output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(y, 1)), 1) # Reuse encoding embeddings inputs = layers.embed_sequence( y, vocab_size=self.vocab_size, embed_dim=self.embed_dim, scope='embed', reuse=True) # Prepare the decoder with the attention cell with tf.variable_scope('decode'): # Project to correct dimensions out_proj = tf.layers.Dense(self.vocab_size, name='output_proj') inputs = tf.layers.dense(inputs, self.hidden_size, name='input_proj') helper = seq2seq.TrainingHelper(inputs, output_lengths) decoder = seq2seq.BasicDecoder( cell=decoder_cell, helper=helper, initial_state=decoder_initial_state, output_layer=out_proj) max_len = tf.reduce_max(output_lengths) final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode( decoder=decoder, impute_finished=True, maximum_iterations=max_len) logits = final_outputs.rnn_output # Set valid timesteps to 1 and padded steps to 0, # so we only look at the actual sequence without the padding mask = tf.sequence_mask(output_lengths, maxlen=max_len, dtype=tf.float32) # Prioritize examples that the model was wrong on, # by setting weight=1 to any example where the prediction was not 1, # i.e. incorrect # weights = tf.to_float(tf.not_equal(y[:, :-1], 1)) # Training and loss ops, # with gradient clipping (see [4]) loss_op = seq2seq.sequence_loss(logits, self.y, weights=mask) optimizer = tf.train.AdamOptimizer(self.learning_rate) gradients, variables = zip(*optimizer.compute_gradients(loss_op)) gradients, _ = tf.clip_by_global_norm(gradients, self.max_grad_norm) train_op = optimizer.apply_gradients(zip(gradients, variables)) # Compute accuracy # Use the mask from before so we only compare # the relevant sequence lengths for each example pred = tf.argmax(logits, axis=2, output_type=tf.int32) pred = tf.boolean_mask(pred, mask) true = tf.boolean_mask(self.y, mask) accs = tf.cast(tf.equal(pred, true), tf.float32) accuracy_op = tf.reduce_mean(accs, name='acc') return loss_op, train_op, accuracy_op
Example #7
Source File: seq2seq_model.py From AmusingPythonCodes with MIT License | 4 votes |
def _build_model(self): with tf.variable_scope("embeddings"): self.source_embs = tf.get_variable(name="source_embs", shape=[self.cfg.source_vocab_size, self.cfg.emb_dim], dtype=tf.float32, trainable=True) self.target_embs = tf.get_variable(name="embeddings", shape=[self.cfg.vocab_size, self.cfg.emb_dim], dtype=tf.float32, trainable=True) source_emb = tf.nn.embedding_lookup(self.source_embs, self.enc_source) target_emb = tf.nn.embedding_lookup(self.target_embs, self.dec_target_in) print("source embedding shape: {}".format(source_emb.get_shape().as_list())) print("target input embedding shape: {}".format(target_emb.get_shape().as_list())) with tf.variable_scope("encoder"): if self.cfg.use_bi_rnn: with tf.variable_scope("bi-directional_rnn"): cell_fw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \ LSTMCell(self.cfg.num_units) cell_bw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \ LSTMCell(self.cfg.num_units) bi_outputs, _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, source_emb, dtype=tf.float32, sequence_length=self.enc_seq_len) source_emb = tf.concat(bi_outputs, axis=-1) print("bi-directional rnn output shape: {}".format(source_emb.get_shape().as_list())) input_project = tf.layers.Dense(units=self.cfg.num_units, dtype=tf.float32, name="input_projection") source_emb = input_project(source_emb) print("encoder input projection shape: {}".format(source_emb.get_shape().as_list())) enc_cells = self._create_encoder_cell() self.enc_outputs, self.enc_states = dynamic_rnn(enc_cells, source_emb, sequence_length=self.enc_seq_len, dtype=tf.float32) print("encoder output shape: {}".format(self.enc_outputs.get_shape().as_list())) with tf.variable_scope("decoder"): self.max_dec_seq_len = tf.reduce_max(self.dec_seq_len, name="max_dec_seq_len") self.dec_cells, self.dec_init_states = self._create_decoder_cell() # define input and output projection layer input_project = tf.layers.Dense(units=self.cfg.num_units, name="input_projection") self.dense_layer = tf.layers.Dense(units=self.cfg.vocab_size, name="output_projection") if self.mode == "train": # either "train" or "decode" # for training target_emb = input_project(target_emb) train_helper = TrainingHelper(target_emb, sequence_length=self.dec_seq_len, name="train_helper") train_decoder = BasicDecoder(self.dec_cells, helper=train_helper, output_layer=self.dense_layer, initial_state=self.dec_init_states) self.dec_output, _, _ = dynamic_decode(train_decoder, impute_finished=True, maximum_iterations=self.max_dec_seq_len) print("decoder output shape: {} (vocab size)".format(self.dec_output.rnn_output.get_shape().as_list())) # for decode start_token = tf.ones(shape=[self.batch_size, ], dtype=tf.int32) * self.cfg.target_dict[GO] end_token = self.cfg.target_dict[EOS] def inputs_project(inputs): return input_project(tf.nn.embedding_lookup(self.target_embs, inputs)) dec_helper = GreedyEmbeddingHelper(embedding=inputs_project, start_tokens=start_token, end_token=end_token) infer_decoder = BasicDecoder(self.dec_cells, helper=dec_helper, initial_state=self.dec_init_states, output_layer=self.dense_layer) infer_dec_output, _, _ = dynamic_decode(infer_decoder, maximum_iterations=self.cfg.maximum_iterations) self.dec_predicts = infer_dec_output.sample_id
Example #8
Source File: decoders.py From language with Apache License 2.0 | 4 votes |
def _build_helper(self, batch_size, embeddings, inputs, inputs_length, mode, hparams, decoder_hparams): """Builds a helper instance for BasicDecoder.""" # Auxiliary decoding mode at training time. if decoder_hparams.auxiliary: start_tokens = tf.fill([batch_size], text_encoder.PAD_ID) # helper = helpers.FixedContinuousEmbeddingHelper( # embedding=embeddings, # start_tokens=start_tokens, # end_token=text_encoder.EOS_ID, # num_steps=hparams.aux_decode_length) helper = contrib_seq2seq.SampleEmbeddingHelper( embedding=embeddings, start_tokens=start_tokens, end_token=text_encoder.EOS_ID, softmax_temperature=None) # Continuous decoding. elif hparams.decoder_continuous: # Scheduled mixing. if mode == tf.estimator.ModeKeys.TRAIN and hparams.scheduled_training: helper = helpers.ScheduledContinuousEmbeddingTrainingHelper( inputs=inputs, sequence_length=inputs_length, mixing_concentration=hparams.scheduled_mixing_concentration) # Pure continuous decoding (hard to train!). elif mode == tf.estimator.ModeKeys.TRAIN: helper = helpers.ContinuousEmbeddingTrainingHelper( inputs=inputs, sequence_length=inputs_length) # EVAL and PREDICT expect teacher forcing behavior. else: helper = contrib_seq2seq.TrainingHelper( inputs=inputs, sequence_length=inputs_length) # Standard decoding. else: # Scheduled sampling. if mode == tf.estimator.ModeKeys.TRAIN and hparams.scheduled_training: helper = contrib_seq2seq.ScheduledEmbeddingTrainingHelper( inputs=inputs, sequence_length=inputs_length, embedding=embeddings, sampling_probability=hparams.scheduled_sampling_probability) # Teacher forcing (also for EVAL and PREDICT). else: helper = contrib_seq2seq.TrainingHelper( inputs=inputs, sequence_length=inputs_length) return helper