Python tensorflow.contrib.seq2seq.BeamSearchDecoder() Examples
The following are 4
code examples of tensorflow.contrib.seq2seq.BeamSearchDecoder().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.seq2seq
, or try the search function
.
Example #1
Source File: seq2seq.py From retrosynthesis_planner with GNU General Public License v3.0 | 5 votes |
def _make_predict(self, decoder_cell, decoder_initial_state): # Access embeddings directly with tf.variable_scope('embed', reuse=True): embeddings = tf.get_variable('embeddings') # Assume 0 is the START token start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32) # For predictions, we use beam search to return multiple results with tf.variable_scope('decode', reuse=True): # Project to correct dimensions out_proj = tf.layers.Dense(self.vocab_size, name='output_proj') embeddings = tf.layers.dense(embeddings, self.hidden_size, name='input_proj') decoder = seq2seq.BeamSearchDecoder( cell=decoder_cell, embedding=embeddings, start_tokens=start_tokens, end_token=END, initial_state=decoder_initial_state, beam_width=self.beam_width, output_layer=out_proj ) final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode( decoder=decoder, impute_finished=False, maximum_iterations=self.max_decode_iter) # Swap axes for an order that makes more sense (to me) # such that we have [batch_size, beam_width, T], i.e. # each row is a output sequence return tf.transpose(final_outputs.predicted_ids, [0,2,1])
Example #2
Source File: attention_predictor.py From aster with MIT License | 5 votes |
def _build_decoder(self, decoder_cell, batch_size): embedding_fn = functools.partial(tf.one_hot, depth=self.num_classes) output_layer = tf.layers.Dense( self.num_classes, activation=None, use_bias=True, kernel_initializer=tf.variance_scaling_initializer(), bias_initializer=tf.zeros_initializer()) if self._is_training: train_helper = seq2seq.TrainingHelper( embedding_fn(self._groundtruth_dict['decoder_inputs']), sequence_length=self._groundtruth_dict['decoder_lengths'], time_major=False) decoder = seq2seq.BasicDecoder( cell=decoder_cell, helper=train_helper, initial_state=decoder_cell.zero_state(batch_size, tf.float32), output_layer=output_layer) else: decoder = seq2seq.BeamSearchDecoder( cell=decoder_cell, embedding=embedding_fn, start_tokens=tf.fill([batch_size], self.start_label), end_token=self.end_label, initial_state=decoder_cell.zero_state(batch_size * self._beam_width, tf.float32), beam_width=self._beam_width, output_layer=output_layer, length_penalty_weight=0.0) return decoder
Example #3
Source File: decoder_unimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _build_decoder_test_beam_search(self): r""" Builds a beam search test decoder """ if self._hparams.enable_attention is True: cells, initial_state = add_attention( cells=self._decoder_cells, attention_types=self._hparams.attention_type[1], num_units=self._hparams.decoder_units_per_layer[-1], memory=self._encoder_memory, memory_len=self._encoder_features_len, beam_search=True, batch_size=self._batch_size, beam_width=self._hparams.beam_width, initial_state=self._decoder_initial_state, mode=self._mode, dtype=self._hparams.dtype, fusion_type='linear_fusion', write_attention_alignment=self._hparams.write_attention_alignment) else: # does the non-attentive beam decoder need tile_batch ? cells = self._decoder_cells decoder_initial_state_tiled = seq2seq.tile_batch( # guess so ? it compiles without it too self._decoder_initial_state, multiplier=self._hparams.beam_width) initial_state = decoder_initial_state_tiled self._decoder_inference = seq2seq.BeamSearchDecoder( cell=cells, embedding=self._embedding_matrix, start_tokens=array_ops.fill([self._batch_size], self._GO_ID), end_token=self._EOS_ID, initial_state=initial_state, beam_width=self._hparams.beam_width, output_layer=self._dense_layer, length_penalty_weight=0.6, ) outputs, states, lengths = seq2seq.dynamic_decode( self._decoder_inference, impute_finished=False, maximum_iterations=self._hparams.max_label_length, swap_memory=False) if self._hparams.write_attention_alignment is True: self.attention_summary, self.attention_alignment = self._create_attention_alignments_summary(states) self.inference_outputs = outputs.beam_search_decoder_output self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam self.inference_predicted_beam = outputs.predicted_ids self.beam_search_output = outputs.beam_search_decoder_output
Example #4
Source File: decoder_bimodal.py From avsr-tf1 with GNU General Public License v3.0 | 4 votes |
def _build_decoder_beam_search(self): batch_size, _ = tf.unstack(tf.shape(self._labels)) attention_mechanisms, layer_sizes = self._create_attention_mechanisms(beam_search=True) decoder_initial_state_tiled = seq2seq.tile_batch( self._decoder_initial_state, multiplier=self._hparams.beam_width) if self._hparams.enable_attention is True: attention_cells = seq2seq.AttentionWrapper( cell=self._decoder_cells, attention_mechanism=attention_mechanisms, attention_layer_size=layer_sizes, initial_cell_state=decoder_initial_state_tiled, alignment_history=self._hparams.write_attention_alignment, output_attention=self._output_attention) initial_state = attention_cells.zero_state( dtype=self._hparams.dtype, batch_size=batch_size * self._hparams.beam_width) initial_state = initial_state.clone( cell_state=decoder_initial_state_tiled) cells = attention_cells else: cells = self._decoder_cells initial_state = decoder_initial_state_tiled self._decoder_inference = seq2seq.BeamSearchDecoder( cell=cells, embedding=self._embedding_matrix, start_tokens=array_ops.fill([batch_size], self._GO_ID), end_token=self._EOS_ID, initial_state=initial_state, beam_width=self._hparams.beam_width, output_layer=self._dense_layer, length_penalty_weight=0.5, ) outputs, states, lengths = seq2seq.dynamic_decode( self._decoder_inference, impute_finished=False, maximum_iterations=self._hparams.max_label_length, swap_memory=False) if self._hparams.write_attention_alignment is True: self.attention_summary = self._create_attention_alignments_summary(states) self.inference_outputs = outputs.beam_search_decoder_output self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam self.inference_predicted_beam = outputs.predicted_ids self.beam_search_output = outputs.beam_search_decoder_output