Python scipy.ndimage.filters.laplace() Examples
The following are 6
code examples of scipy.ndimage.filters.laplace().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy.ndimage.filters
, or try the search function
.
Example #1
Source File: drlse_algo.py From Level-Set with MIT License | 6 votes |
def drlse_edge(phi_0, g, lmda, mu, alfa, epsilon, timestep, iters, potentialFunction): # Updated Level Set Function """ :param phi_0: level set function to be updated by level set evolution :param g: edge indicator function :param lmda: weight of the weighted length term :param mu: weight of distance regularization term :param alfa: weight of the weighted area term :param epsilon: width of Dirac Delta function :param timestep: time step :param iters: number of iterations :param potentialFunction: choice of potential function in distance regularization term. % As mentioned in the above paper, two choices are provided: potentialFunction='single-well' or % potentialFunction='double-well', which correspond to the potential functions p1 (single-well) % and p2 (double-well), respectively. """ phi = phi_0.copy() [vy, vx] = np.gradient(g) for k in range(iters): phi = NeumannBoundCond(phi) [phi_y, phi_x] = np.gradient(phi) s = np.sqrt(np.square(phi_x) + np.square(phi_y)) smallNumber = 1e-10 Nx = phi_x / (s + smallNumber) # add a small positive number to avoid division by zero Ny = phi_y / (s + smallNumber) curvature = div(Nx, Ny) if potentialFunction == 'single-well': distRegTerm = filters.laplace(phi, mode='wrap') - curvature # compute distance regularization term in equation (13) with the single-well potential p1. elif potentialFunction == 'double-well': distRegTerm = distReg_p2(phi) # compute the distance regularization term in eqaution (13) with the double-well potential p2. else: print('Error: Wrong choice of potential function. Please input the string "single-well" or "double-well" in the drlse_edge function.') diracPhi = Dirac(phi, epsilon) areaTerm = diracPhi * g # balloon/pressure force edgeTerm = diracPhi * (vx * Nx + vy * Ny) + diracPhi * g * curvature phi = phi + timestep * (mu * distRegTerm + lmda * edgeTerm + alfa * areaTerm) return phi
Example #2
Source File: drlse_algo.py From Level-Set with MIT License | 5 votes |
def distReg_p2(phi): """ compute the distance regularization term with the double-well potential p2 in equation (16) """ [phi_y, phi_x] = np.gradient(phi) s = np.sqrt(np.square(phi_x) + np.square(phi_y)) a = (s >= 0) & (s <= 1) b = (s > 1) ps = a * np.sin(2 * np.pi * s) / (2 * np.pi) + b * (s - 1) # compute first order derivative of the double-well potential p2 in equation (16) dps = ((ps != 0) * ps + (ps == 0)) / ((s != 0) * s + (s == 0)) # compute d_p(s)=p'(s)/s in equation (10). As s-->0, we have d_p(s)-->1 according to equation (18) return div(dps * phi_x - phi_x, dps * phi_y - phi_y) + filters.laplace(phi, mode='wrap')
Example #3
Source File: helpers.py From demon with GNU General Public License v3.0 | 5 votes |
def measure_sharpness(img): """Measures the sharpeness of an image using the variance of the laplacian img: PIL.Image Returns the variance of the laplacian. Higher values mean a sharper image """ img_gray = np.array(img.convert('L'), dtype=np.float32) return np.var(laplace(img_gray))
Example #4
Source File: test__diff.py From dask-image with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_laplace_comprehensions(): np.random.seed(0) a = np.random.random((3, 12, 14)) d = da.from_array(a, chunks=(3, 6, 7)) l2s = [da_ndf.laplace(d[i]) for i in range(len(d))] l2c = [da_ndf.laplace(d[i])[None] for i in range(len(d))] dau.assert_eq(np.stack(l2s), da.stack(l2s)) dau.assert_eq(np.concatenate(l2c), da.concatenate(l2c))
Example #5
Source File: test__diff.py From dask-image with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_laplace_compare(): s = (10, 11, 12) a = np.arange(float(np.prod(s))).reshape(s) d = da.from_array(a, chunks=(5, 5, 6)) dau.assert_eq( sp_ndf.laplace(a), da_ndf.laplace(d) )
Example #6
Source File: morphology.py From rivuletpy with BSD 3-Clause "New" or "Revised" License | 4 votes |
def gvf(f, mu=0.05, iterations=30, anisotropic=False, ignore_second_term=False): # Gradient vector flow # Translated from https://github.com/smistad/3D-Gradient-Vector-Flow-for-Matlab f = (f - f.min()) / (f.max() - f.min()) f = enforce_mirror_boundary( f) # Enforce the mirror conditions on the boundary dx, dy, dz = np.gradient(f) # Initialse with normal gradients ''' Initialise the GVF vectors following S3 in Yu, Zeyun, and Chandrajit Bajaj. "A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion." CVPR, 2004. CVPR 2004. It only uses one of the surronding neighbours with the lowest intensity ''' magsq = dx**2 + dy**2 + dz**2 # Set up the initial vector field u = dx.copy() v = dy.copy() w = dz.copy() for i in tqdm(range(iterations)): # The boundary might not matter here # u = enforce_mirror_boundary(u) # v = enforce_mirror_boundary(v) # w = enforce_mirror_boundary(w) # Update the vector field if anisotropic: G = g_all(u, v, w) u += mu / 6. * div(np.sum(G * d(u), axis=0)) v += mu / 6. * div(np.sum(G * d(v), axis=0)) w += mu / 6. * div(np.sum(G * d(w), axis=0)) else: u += mu * 6 * laplace(u) v += mu * 6 * laplace(v) w += mu * 6 * laplace(w) if not ignore_second_term: u -= (u - dx) * magsq v -= (v - dy) * magsq w -= (w - dz) * magsq return np.stack((u, v, w), axis=0)