Python pandas.core.dtypes.generic.ABCIndex() Examples

The following are 20 code examples of pandas.core.dtypes.generic.ABCIndex(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pandas.core.dtypes.generic , or try the search function .
Example #1
Source File: datetimelike.py    From recruit with Apache License 2.0 6 votes vote down vote up
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
        """
        Create the join wrapper methods.
        """
        from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin

        @staticmethod
        def wrapper(left, right):
            if isinstance(left, (np.ndarray, ABCIndex, ABCSeries,
                                 DatetimeLikeArrayMixin)):
                left = left.view('i8')
            if isinstance(right, (np.ndarray, ABCIndex, ABCSeries,
                                  DatetimeLikeArrayMixin)):
                right = right.view('i8')
            results = joinf(left, right)
            if with_indexers:
                join_index, left_indexer, right_indexer = results
                join_index = join_index.view(dtype)
                return join_index, left_indexer, right_indexer
            return results

        return wrapper 
Example #2
Source File: common.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def is_bool_indexer(key):
    if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)):
        if key.dtype == np.object_:
            key = np.asarray(_values_from_object(key))

            if not lib.is_bool_array(key):
                if isna(key).any():
                    raise ValueError('cannot index with vector containing '
                                     'NA / NaN values')
                return False
            return True
        elif key.dtype == np.bool_:
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False 
Example #3
Source File: common.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def is_bool_indexer(key):
    if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)):
        if key.dtype == np.object_:
            key = np.asarray(_values_from_object(key))

            if not lib.is_bool_array(key):
                if isna(key).any():
                    raise ValueError('cannot index with vector containing '
                                     'NA / NaN values')
                return False
            return True
        elif key.dtype == np.bool_:
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False 
Example #4
Source File: datetimelike.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def _join_i8_wrapper(joinf, dtype, with_indexers=True):
        """
        Create the join wrapper methods.
        """
        from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin

        @staticmethod
        def wrapper(left, right):
            if isinstance(left, (np.ndarray, ABCIndex, ABCSeries,
                                 DatetimeLikeArrayMixin)):
                left = left.view('i8')
            if isinstance(right, (np.ndarray, ABCIndex, ABCSeries,
                                  DatetimeLikeArrayMixin)):
                right = right.view('i8')
            results = joinf(left, right)
            if with_indexers:
                join_index, left_indexer, right_indexer = results
                join_index = join_index.view(dtype)
                return join_index, left_indexer, right_indexer
            return results

        return wrapper 
Example #5
Source File: common.py    From Splunking-Crime with GNU Affero General Public License v3.0 6 votes vote down vote up
def is_bool_indexer(key):
    if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)):
        if key.dtype == np.object_:
            key = np.asarray(_values_from_object(key))

            if not lib.is_bool_array(key):
                if isna(key).any():
                    raise ValueError('cannot index with vector containing '
                                     'NA / NaN values')
                return False
            return True
        elif key.dtype == np.bool_:
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False 
Example #6
Source File: test_generic.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_abc_types(self):
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index)
        assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index)
        assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index)
        assert isinstance(self.multi_index, gt.ABCMultiIndex)
        assert isinstance(self.datetime_index, gt.ABCDatetimeIndex)
        assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex)
        assert isinstance(self.period_index, gt.ABCPeriodIndex)
        assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex)
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
        assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
        assert isinstance(self.df, gt.ABCDataFrame)
        with catch_warnings(record=True):
            assert isinstance(self.df.to_panel(), gt.ABCPanel)
        assert isinstance(self.sparse_series, gt.ABCSparseSeries)
        assert isinstance(self.sparse_array, gt.ABCSparseArray)
        assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame)
        assert isinstance(self.categorical, gt.ABCCategorical)
        assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod)

        assert isinstance(pd.DateOffset(), gt.ABCDateOffset)
        assert isinstance(pd.Period('2012', freq='A-DEC').freq,
                          gt.ABCDateOffset)
        assert not isinstance(pd.Period('2012', freq='A-DEC'),
                              gt.ABCDateOffset)
        assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval)
        assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) 
Example #7
Source File: test_base.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_generated_op_names(opname, indices):
    index = indices
    if isinstance(index, ABCIndex) and opname == 'rsub':
        # pd.Index.__rsub__ does not exist; though the method does exist
        # for subclasses.  see GH#19723
        return
    opname = '__{name}__'.format(name=opname)
    method = getattr(index, opname)
    assert method.__name__ == opname 
Example #8
Source File: test_base.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def test_generated_op_names(opname, indices):
    index = indices
    if isinstance(index, ABCIndex) and opname == 'rsub':
        # pd.Index.__rsub__ does not exist; though the method does exist
        # for subclasses.  see GH#19723
        return
    opname = '__{name}__'.format(name=opname)
    method = getattr(index, opname)
    assert method.__name__ == opname 
Example #9
Source File: test_base.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def test_generated_op_names(opname, indices):
    index = indices
    if isinstance(index, ABCIndex) and opname == 'rsub':
        # pd.Index.__rsub__ does not exist; though the method does exist
        # for subclasses.  see GH#19723
        return
    opname = '__{name}__'.format(name=opname)
    method = getattr(index, opname)
    assert method.__name__ == opname 
Example #10
Source File: strings.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def _make_accessor(cls, data):
        from pandas.core.index import Index

        if (isinstance(data, ABCSeries) and
                not ((is_categorical_dtype(data.dtype) and
                      is_object_dtype(data.values.categories)) or
                     (is_object_dtype(data.dtype)))):
            # it's neither a string series not a categorical series with
            # strings inside the categories.
            # this really should exclude all series with any non-string values
            # (instead of test for object dtype), but that isn't practical for
            # performance reasons until we have a str dtype (GH 9343)
            raise AttributeError("Can only use .str accessor with string "
                                 "values, which use np.object_ dtype in "
                                 "pandas")
        elif isinstance(data, Index):
            # can't use ABCIndex to exclude non-str

            # see scc/inferrence.pyx which can contain string values
            allowed_types = ('string', 'unicode', 'mixed', 'mixed-integer')
            if data.inferred_type not in allowed_types:
                message = ("Can only use .str accessor with string values "
                           "(i.e. inferred_type is 'string', 'unicode' or "
                           "'mixed')")
                raise AttributeError(message)
            if data.nlevels > 1:
                message = ("Can only use .str accessor with Index, not "
                           "MultiIndex")
                raise AttributeError(message)
        return cls(data) 
Example #11
Source File: test_generic.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def test_abc_types(self):
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index)
        assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index)
        assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index)
        assert isinstance(self.multi_index, gt.ABCMultiIndex)
        assert isinstance(self.datetime_index, gt.ABCDatetimeIndex)
        assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex)
        assert isinstance(self.period_index, gt.ABCPeriodIndex)
        assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex)
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
        assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
        assert isinstance(self.df, gt.ABCDataFrame)
        with catch_warnings(record=True):
            assert isinstance(self.df.to_panel(), gt.ABCPanel)
        assert isinstance(self.sparse_series, gt.ABCSparseSeries)
        assert isinstance(self.sparse_array, gt.ABCSparseArray)
        assert isinstance(self.categorical, gt.ABCCategorical)
        assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod)

        assert isinstance(pd.DateOffset(), gt.ABCDateOffset)
        assert isinstance(pd.Period('2012', freq='A-DEC').freq,
                          gt.ABCDateOffset)
        assert not isinstance(pd.Period('2012', freq='A-DEC'),
                              gt.ABCDateOffset) 
Example #12
Source File: strings.py    From Splunking-Crime with GNU Affero General Public License v3.0 5 votes vote down vote up
def _make_accessor(cls, data):
        from pandas.core.index import Index

        if (isinstance(data, ABCSeries) and
                not ((is_categorical_dtype(data.dtype) and
                      is_object_dtype(data.values.categories)) or
                     (is_object_dtype(data.dtype)))):
            # it's neither a string series not a categorical series with
            # strings inside the categories.
            # this really should exclude all series with any non-string values
            # (instead of test for object dtype), but that isn't practical for
            # performance reasons until we have a str dtype (GH 9343)
            raise AttributeError("Can only use .str accessor with string "
                                 "values, which use np.object_ dtype in "
                                 "pandas")
        elif isinstance(data, Index):
            # can't use ABCIndex to exclude non-str

            # see scc/inferrence.pyx which can contain string values
            allowed_types = ('string', 'unicode', 'mixed', 'mixed-integer')
            if data.inferred_type not in allowed_types:
                message = ("Can only use .str accessor with string values "
                           "(i.e. inferred_type is 'string', 'unicode' or "
                           "'mixed')")
                raise AttributeError(message)
            if data.nlevels > 1:
                message = ("Can only use .str accessor with Index, not "
                           "MultiIndex")
                raise AttributeError(message)
        return cls(data) 
Example #13
Source File: test_generic.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_abc_types(self):
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index)
        assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index)
        assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index)
        assert isinstance(self.multi_index, gt.ABCMultiIndex)
        assert isinstance(self.datetime_index, gt.ABCDatetimeIndex)
        assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex)
        assert isinstance(self.period_index, gt.ABCPeriodIndex)
        assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex)
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
        assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
        assert isinstance(self.df, gt.ABCDataFrame)
        with catch_warnings(record=True):
            simplefilter('ignore', FutureWarning)
            assert isinstance(self.df.to_panel(), gt.ABCPanel)
        assert isinstance(self.sparse_series, gt.ABCSparseSeries)
        assert isinstance(self.sparse_array, gt.ABCSparseArray)
        assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame)
        assert isinstance(self.categorical, gt.ABCCategorical)
        assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod)

        assert isinstance(pd.DateOffset(), gt.ABCDateOffset)
        assert isinstance(pd.Period('2012', freq='A-DEC').freq,
                          gt.ABCDateOffset)
        assert not isinstance(pd.Period('2012', freq='A-DEC'),
                              gt.ABCDateOffset)
        assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval)
        assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)

        assert isinstance(self.datetime_array, gt.ABCDatetimeArray)
        assert not isinstance(self.datetime_index, gt.ABCDatetimeArray)

        assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray)
        assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray) 
Example #14
Source File: test_base.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def test_generated_op_names(opname, indices):
    index = indices
    if isinstance(index, ABCIndex) and opname == 'rsub':
        # pd.Index.__rsub__ does not exist; though the method does exist
        # for subclasses.  see GH#19723
        return
    opname = '__{name}__'.format(name=opname)
    method = getattr(index, opname)
    assert method.__name__ == opname 
Example #15
Source File: strings.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def _validate(data):
        from pandas.core.index import Index

        if (isinstance(data, ABCSeries) and
                not ((is_categorical_dtype(data.dtype) and
                      is_object_dtype(data.values.categories)) or
                     (is_object_dtype(data.dtype)))):
            # it's neither a string series not a categorical series with
            # strings inside the categories.
            # this really should exclude all series with any non-string values
            # (instead of test for object dtype), but that isn't practical for
            # performance reasons until we have a str dtype (GH 9343)
            raise AttributeError("Can only use .str accessor with string "
                                 "values, which use np.object_ dtype in "
                                 "pandas")
        elif isinstance(data, Index):
            # can't use ABCIndex to exclude non-str

            # see src/inference.pyx which can contain string values
            allowed_types = ('string', 'unicode', 'mixed', 'mixed-integer')
            if is_categorical_dtype(data.dtype):
                inf_type = data.categories.inferred_type
            else:
                inf_type = data.inferred_type
            if inf_type not in allowed_types:
                message = ("Can only use .str accessor with string values "
                           "(i.e. inferred_type is 'string', 'unicode' or "
                           "'mixed')")
                raise AttributeError(message)
            if data.nlevels > 1:
                message = ("Can only use .str accessor with Index, not "
                           "MultiIndex")
                raise AttributeError(message) 
Example #16
Source File: test_generic.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def test_abc_types(self):
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index)
        assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index)
        assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index)
        assert isinstance(self.multi_index, gt.ABCMultiIndex)
        assert isinstance(self.datetime_index, gt.ABCDatetimeIndex)
        assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex)
        assert isinstance(self.period_index, gt.ABCPeriodIndex)
        assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex)
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
        assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
        assert isinstance(self.df, gt.ABCDataFrame)
        with catch_warnings(record=True):
            assert isinstance(self.df.to_panel(), gt.ABCPanel)
        assert isinstance(self.sparse_series, gt.ABCSparseSeries)
        assert isinstance(self.sparse_array, gt.ABCSparseArray)
        assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame)
        assert isinstance(self.categorical, gt.ABCCategorical)
        assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod)

        assert isinstance(pd.DateOffset(), gt.ABCDateOffset)
        assert isinstance(pd.Period('2012', freq='A-DEC').freq,
                          gt.ABCDateOffset)
        assert not isinstance(pd.Period('2012', freq='A-DEC'),
                              gt.ABCDateOffset)
        assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval)
        assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) 
Example #17
Source File: test_base.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def test_generated_op_names(opname, indices):
    index = indices
    if isinstance(index, ABCIndex) and opname == 'rsub':
        # pd.Index.__rsub__ does not exist; though the method does exist
        # for subclasses.  see GH#19723
        return
    opname = '__{name}__'.format(name=opname)
    method = getattr(index, opname)
    assert method.__name__ == opname 
Example #18
Source File: test_generic.py    From recruit with Apache License 2.0 5 votes vote down vote up
def test_abc_types(self):
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index)
        assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index)
        assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index)
        assert isinstance(self.multi_index, gt.ABCMultiIndex)
        assert isinstance(self.datetime_index, gt.ABCDatetimeIndex)
        assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex)
        assert isinstance(self.period_index, gt.ABCPeriodIndex)
        assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex)
        assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass)
        assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass)
        assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries)
        assert isinstance(self.df, gt.ABCDataFrame)
        with catch_warnings(record=True):
            simplefilter('ignore', FutureWarning)
            assert isinstance(self.df.to_panel(), gt.ABCPanel)
        assert isinstance(self.sparse_series, gt.ABCSparseSeries)
        assert isinstance(self.sparse_array, gt.ABCSparseArray)
        assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame)
        assert isinstance(self.categorical, gt.ABCCategorical)
        assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod)

        assert isinstance(pd.DateOffset(), gt.ABCDateOffset)
        assert isinstance(pd.Period('2012', freq='A-DEC').freq,
                          gt.ABCDateOffset)
        assert not isinstance(pd.Period('2012', freq='A-DEC'),
                              gt.ABCDateOffset)
        assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval)
        assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)

        assert isinstance(self.datetime_array, gt.ABCDatetimeArray)
        assert not isinstance(self.datetime_index, gt.ABCDatetimeArray)

        assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray)
        assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray) 
Example #19
Source File: common.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 4 votes vote down vote up
def is_bool_indexer(key):
    # type: (Any) -> bool
    """
    Check whether `key` is a valid boolean indexer.

    Parameters
    ----------
    key : Any
        Only list-likes may be considered boolean indexers.
        All other types are not considered a boolean indexer.
        For array-like input, boolean ndarrays or ExtensionArrays
        with ``_is_boolean`` set are considered boolean indexers.

    Returns
    -------
    bool

    Raises
    ------
    ValueError
        When the array is an object-dtype ndarray or ExtensionArray
        and contains missing values.
    """
    na_msg = 'cannot index with vector containing NA / NaN values'
    if (isinstance(key, (ABCSeries, np.ndarray, ABCIndex)) or
            (is_array_like(key) and is_extension_array_dtype(key.dtype))):
        if key.dtype == np.object_:
            key = np.asarray(values_from_object(key))

            if not lib.is_bool_array(key):
                if isna(key).any():
                    raise ValueError(na_msg)
                return False
            return True
        elif is_bool_dtype(key.dtype):
            # an ndarray with bool-dtype by definition has no missing values.
            # So we only need to check for NAs in ExtensionArrays
            if is_extension_array_dtype(key.dtype):
                if np.any(key.isna()):
                    raise ValueError(na_msg)
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False 
Example #20
Source File: common.py    From recruit with Apache License 2.0 4 votes vote down vote up
def is_bool_indexer(key):
    # type: (Any) -> bool
    """
    Check whether `key` is a valid boolean indexer.

    Parameters
    ----------
    key : Any
        Only list-likes may be considered boolean indexers.
        All other types are not considered a boolean indexer.
        For array-like input, boolean ndarrays or ExtensionArrays
        with ``_is_boolean`` set are considered boolean indexers.

    Returns
    -------
    bool

    Raises
    ------
    ValueError
        When the array is an object-dtype ndarray or ExtensionArray
        and contains missing values.
    """
    na_msg = 'cannot index with vector containing NA / NaN values'
    if (isinstance(key, (ABCSeries, np.ndarray, ABCIndex)) or
            (is_array_like(key) and is_extension_array_dtype(key.dtype))):
        if key.dtype == np.object_:
            key = np.asarray(values_from_object(key))

            if not lib.is_bool_array(key):
                if isna(key).any():
                    raise ValueError(na_msg)
                return False
            return True
        elif is_bool_dtype(key.dtype):
            # an ndarray with bool-dtype by definition has no missing values.
            # So we only need to check for NAs in ExtensionArrays
            if is_extension_array_dtype(key.dtype):
                if np.any(key.isna()):
                    raise ValueError(na_msg)
            return True
    elif isinstance(key, list):
        try:
            arr = np.asarray(key)
            return arr.dtype == np.bool_ and len(arr) == len(key)
        except TypeError:  # pragma: no cover
            return False

    return False