Python pandas.core.dtypes.generic.ABCSeries() Examples
The following are 30
code examples of pandas.core.dtypes.generic.ABCSeries().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.dtypes.generic
, or try the search function
.
Example #1
Source File: base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def __getitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .format(selection=self._selection)) if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .format(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not getattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=1)
Example #2
Source File: common.py From recruit with Apache License 2.0 | 6 votes |
def _get_rename_function(mapper): """ Returns a function that will map names/labels, dependent if mapper is a dict, Series or just a function. """ if isinstance(mapper, (compat.Mapping, ABCSeries)): def f(x): if x in mapper: return mapper[x] else: return x else: f = mapper return f
Example #3
Source File: indexing.py From vnpy_crypto with MIT License | 6 votes |
def check_bool_indexer(ax, key): # boolean indexing, need to check that the data are aligned, otherwise # disallowed # this function assumes that is_bool_indexer(key) == True result = key if isinstance(key, ABCSeries) and not key.index.equals(ax): result = result.reindex(ax) mask = isna(result._values) if mask.any(): raise IndexingError('Unalignable boolean Series provided as ' 'indexer (index of the boolean Series and of ' 'the indexed object do not match') result = result.astype(bool)._values elif is_sparse(result): result = result.to_dense() result = np.asarray(result, dtype=bool) else: # is_bool_indexer has already checked for nulls in the case of an # object array key, so no check needed here result = np.asarray(result, dtype=bool) return result
Example #4
Source File: common.py From vnpy_crypto with MIT License | 6 votes |
def is_bool_indexer(key): if isinstance(key, (ABCSeries, np.ndarray, ABCIndex)): if key.dtype == np.object_: key = np.asarray(_values_from_object(key)) if not lib.is_bool_array(key): if isna(key).any(): raise ValueError('cannot index with vector containing ' 'NA / NaN values') return False return True elif key.dtype == np.bool_: return True elif isinstance(key, list): try: arr = np.asarray(key) return arr.dtype == np.bool_ and len(arr) == len(key) except TypeError: # pragma: no cover return False return False
Example #5
Source File: indexing.py From recruit with Apache License 2.0 | 6 votes |
def check_bool_indexer(ax, key): # boolean indexing, need to check that the data are aligned, otherwise # disallowed # this function assumes that is_bool_indexer(key) == True result = key if isinstance(key, ABCSeries) and not key.index.equals(ax): result = result.reindex(ax) mask = isna(result._values) if mask.any(): raise IndexingError('Unalignable boolean Series provided as ' 'indexer (index of the boolean Series and of ' 'the indexed object do not match') result = result.astype(bool)._values elif is_sparse(result): result = result.to_dense() result = np.asarray(result, dtype=bool) else: # is_bool_indexer has already checked for nulls in the case of an # object array key, so no check needed here result = np.asarray(result, dtype=bool) return result
Example #6
Source File: base.py From vnpy_crypto with MIT License | 6 votes |
def __getitem__(self, key): if self._selection is not None: raise Exception('Column(s) {selection} already selected' .format(selection=self._selection)) if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .format(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not getattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=1)
Example #7
Source File: base.py From recruit with Apache License 2.0 | 6 votes |
def __getitem__(self, key): if self._selection is not None: raise IndexError('Column(s) {selection} already selected' .format(selection=self._selection)) if isinstance(key, (list, tuple, ABCSeries, ABCIndexClass, np.ndarray)): if len(self.obj.columns.intersection(key)) != len(key): bad_keys = list(set(key).difference(self.obj.columns)) raise KeyError("Columns not found: {missing}" .format(missing=str(bad_keys)[1:-1])) return self._gotitem(list(key), ndim=2) elif not getattr(self, 'as_index', False): if key not in self.obj.columns: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=2) else: if key not in self.obj: raise KeyError("Column not found: {key}".format(key=key)) return self._gotitem(key, ndim=1)
Example #8
Source File: apply.py From vnpy_crypto with MIT License | 6 votes |
def wrap_results_for_axis(self): """ return the results for the columns """ results = self.results # we have requested to expand if self.result_type == 'expand': result = self.infer_to_same_shape() # we have a non-series and don't want inference elif not isinstance(results[0], ABCSeries): from pandas import Series result = Series(results) result.index = self.res_index # we may want to infer results else: result = self.infer_to_same_shape() return result
Example #9
Source File: apply.py From vnpy_crypto with MIT License | 6 votes |
def wrap_results_for_axis(self): """ return the results for the rows """ results = self.results result = self.obj._constructor(data=results) if not isinstance(results[0], ABCSeries): try: result.index = self.res_columns except ValueError: pass try: result.columns = self.res_index except ValueError: pass return result
Example #10
Source File: apply.py From recruit with Apache License 2.0 | 6 votes |
def wrap_results_for_axis(self): """ return the results for the columns """ results = self.results # we have requested to expand if self.result_type == 'expand': result = self.infer_to_same_shape() # we have a non-series and don't want inference elif not isinstance(results[0], ABCSeries): from pandas import Series result = Series(results) result.index = self.res_index # we may want to infer results else: result = self.infer_to_same_shape() return result
Example #11
Source File: apply.py From recruit with Apache License 2.0 | 6 votes |
def wrap_results_for_axis(self): """ return the results for the rows """ results = self.results result = self.obj._constructor(data=results) if not isinstance(results[0], ABCSeries): try: result.index = self.res_columns except ValueError: pass try: result.columns = self.res_index except ValueError: pass return result
Example #12
Source File: managers.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x._values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return len(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement
Example #13
Source File: numpy_.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _create_arithmetic_method(cls, op): def arithmetic_method(self, other): if isinstance(other, (ABCIndexClass, ABCSeries)): return NotImplemented elif isinstance(other, cls): other = other._ndarray with np.errstate(all="ignore"): result = op(self._ndarray, other) if op is divmod: a, b = result return cls(a), cls(b) return cls(result) return compat.set_function_name(arithmetic_method, "__{}__".format(op.__name__), cls)
Example #14
Source File: datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def _join_i8_wrapper(joinf, dtype, with_indexers=True): """ Create the join wrapper methods. """ from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin @staticmethod def wrapper(left, right): if isinstance(left, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): left = left.view('i8') if isinstance(right, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): right = right.view('i8') results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view(dtype) return join_index, left_indexer, right_indexer return results return wrapper
Example #15
Source File: apply.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def wrap_results_for_axis(self): """ return the results for the columns """ results = self.results # we have requested to expand if self.result_type == 'expand': result = self.infer_to_same_shape() # we have a non-series and don't want inference elif not isinstance(results[0], ABCSeries): from pandas import Series result = Series(results) result.index = self.res_index # we may want to infer results else: result = self.infer_to_same_shape() return result
Example #16
Source File: apply.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def wrap_results_for_axis(self): """ return the results for the rows """ results = self.results result = self.obj._constructor(data=results) if not isinstance(results[0], ABCSeries): try: result.index = self.res_columns except ValueError: pass try: result.columns = self.res_index except ValueError: pass return result
Example #17
Source File: managers.py From recruit with Apache License 2.0 | 6 votes |
def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x._values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return len(x), else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement
Example #18
Source File: timedeltas.py From vnpy_crypto with MIT License | 6 votes |
def _evaluate_with_timedelta_like(self, other, op): if isinstance(other, ABCSeries): # GH#19042 return NotImplemented opstr = '__{opname}__'.format(opname=op.__name__).replace('__r', '__') # allow division by a timedelta if opstr in ['__div__', '__truediv__', '__floordiv__']: if _is_convertible_to_td(other): other = Timedelta(other) if isna(other): raise NotImplementedError( "division by pd.NaT not implemented") i8 = self.asi8 left, right = i8, other.value if opstr in ['__floordiv__']: result = op(left, right) else: result = op(left, np.float64(right)) result = self._maybe_mask_results(result, convert='float64') return Index(result, name=self.name, copy=False) return NotImplemented
Example #19
Source File: numpy_.py From recruit with Apache License 2.0 | 6 votes |
def _create_arithmetic_method(cls, op): def arithmetic_method(self, other): if isinstance(other, (ABCIndexClass, ABCSeries)): return NotImplemented elif isinstance(other, cls): other = other._ndarray with np.errstate(all="ignore"): result = op(self._ndarray, other) if op is divmod: a, b = result return cls(a), cls(b) return cls(result) return compat.set_function_name(arithmetic_method, "__{}__".format(op.__name__), cls)
Example #20
Source File: datetimelike.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _join_i8_wrapper(joinf, dtype, with_indexers=True): """ Create the join wrapper methods. """ from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin @staticmethod def wrapper(left, right): if isinstance(left, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): left = left.view('i8') if isinstance(right, (np.ndarray, ABCIndex, ABCSeries, DatetimeLikeArrayMixin)): right = right.view('i8') results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view(dtype) return join_index, left_indexer, right_indexer return results return wrapper
Example #21
Source File: datetimelike.py From recruit with Apache License 2.0 | 6 votes |
def _create_comparison_method(cls, op): """ Create a comparison method that dispatches to ``cls.values``. """ def wrapper(self, other): if isinstance(other, ABCSeries): # the arrays defer to Series for comparison ops but the indexes # don't, so we have to unwrap here. other = other._values result = op(self._data, maybe_unwrap_index(other)) return result wrapper.__doc__ = op.__doc__ wrapper.__name__ = '__{}__'.format(op.__name__) return wrapper
Example #22
Source File: datetimelike.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _create_comparison_method(cls, op): """ Create a comparison method that dispatches to ``cls.values``. """ def wrapper(self, other): if isinstance(other, ABCSeries): # the arrays defer to Series for comparison ops but the indexes # don't, so we have to unwrap here. other = other._values result = op(self._data, maybe_unwrap_index(other)) return result wrapper.__doc__ = op.__doc__ wrapper.__name__ = '__{}__'.format(op.__name__) return wrapper
Example #23
Source File: pivot.py From vnpy_crypto with MIT License | 5 votes |
def _convert_by(by): if by is None: by = [] elif (is_scalar(by) or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper)) or hasattr(by, '__call__')): by = [by] else: by = list(by) return by
Example #24
Source File: accessors.py From vnpy_crypto with MIT License | 5 votes |
def __init__(self, data, orig): if not isinstance(data, ABCSeries): raise TypeError("cannot convert an object of type {0} to a " "datetimelike index".format(type(data))) self.values = data self.orig = orig self.name = getattr(data, 'name', None) self.index = getattr(data, 'index', None) self._freeze()
Example #25
Source File: base.py From vnpy_crypto with MIT License | 5 votes |
def _selected_obj(self): if self._selection is None or isinstance(self.obj, ABCSeries): return self.obj else: return self.obj[self._selection]
Example #26
Source File: pivot.py From vnpy_crypto with MIT License | 5 votes |
def _get_names(arrs, names, prefix='row'): if names is None: names = [] for i, arr in enumerate(arrs): if isinstance(arr, ABCSeries) and arr.name is not None: names.append(arr.name) else: names.append('{prefix}_{i}'.format(prefix=prefix, i=i)) else: if len(names) != len(arrs): raise AssertionError('arrays and names must have the same length') if not isinstance(names, list): names = list(names) return names
Example #27
Source File: indexing.py From vnpy_crypto with MIT License | 5 votes |
def length_of_indexer(indexer, target=None): """return the length of a single non-tuple indexer which could be a slice """ if target is not None and isinstance(indexer, slice): l = len(target) start = indexer.start stop = indexer.stop step = indexer.step if start is None: start = 0 elif start < 0: start += l if stop is None or stop > l: stop = l elif stop < 0: stop += l if step is None: step = 1 elif step < 0: step = -step return (stop - start + step - 1) // step elif isinstance(indexer, (ABCSeries, Index, np.ndarray, list)): return len(indexer) elif not is_list_like_indexer(indexer): return 1 raise AssertionError("cannot find the length of the indexer")
Example #28
Source File: category.py From vnpy_crypto with MIT License | 5 votes |
def _create_categorical(self, data, categories=None, ordered=None, dtype=None): """ *this is an internal non-public method* create the correct categorical from data and the properties Parameters ---------- data : data for new Categorical categories : optional categories, defaults to existing ordered : optional ordered attribute, defaults to existing dtype : CategoricalDtype, defaults to existing Returns ------- Categorical """ if (isinstance(data, (ABCSeries, type(self))) and is_categorical_dtype(data)): data = data.values if not isinstance(data, ABCCategorical): if ordered is None and dtype is None: ordered = False from pandas.core.arrays import Categorical data = Categorical(data, categories=categories, ordered=ordered, dtype=dtype) else: if categories is not None: data = data.set_categories(categories, ordered=ordered) elif ordered is not None and ordered != data.ordered: data = data.set_ordered(ordered) if isinstance(dtype, CategoricalDtype): # we want to silently ignore dtype='category' data = data._set_dtype(dtype) return data
Example #29
Source File: _converter.py From recruit with Apache License 2.0 | 5 votes |
def _dt_to_float_ordinal(dt): """ Convert :mod:`datetime` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`. """ if (isinstance(dt, (np.ndarray, Index, ABCSeries) ) and is_datetime64_ns_dtype(dt)): base = dates.epoch2num(dt.asi8 / 1.0E9) else: base = dates.date2num(dt) return base # Datetime Conversion
Example #30
Source File: pivot.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _convert_by(by): if by is None: by = [] elif (is_scalar(by) or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper)) or hasattr(by, '__call__')): by = [by] else: by = list(by) return by