Python pandas.core.dtypes.generic.ABCMultiIndex() Examples
The following are 17
code examples of pandas.core.dtypes.generic.ABCMultiIndex().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.dtypes.generic
, or try the search function
.
Example #1
Source File: excel.py From recruit with Apache License 2.0 | 6 votes |
def _format_header_regular(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, Index)) if has_aliases or self.header: coloffset = 0 if self.index: coloffset = 1 if isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) colnames = self.columns if has_aliases: if len(self.header) != len(self.columns): raise ValueError('Writing {cols} cols but got {alias} ' 'aliases'.format(cols=len(self.columns), alias=len(self.header))) else: colnames = self.header for colindex, colname in enumerate(colnames): yield ExcelCell(self.rowcounter, colindex + coloffset, colname, self.header_style)
Example #2
Source File: excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _format_header_regular(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, Index)) if has_aliases or self.header: coloffset = 0 if self.index: coloffset = 1 if isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) colnames = self.columns if has_aliases: if len(self.header) != len(self.columns): raise ValueError('Writing {cols} cols but got {alias} ' 'aliases'.format(cols=len(self.columns), alias=len(self.header))) else: colnames = self.header for colindex, colname in enumerate(colnames): yield ExcelCell(self.rowcounter, colindex + coloffset, colname, self.header_style)
Example #3
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): simplefilter('ignore', FutureWarning) assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) assert isinstance(self.datetime_array, gt.ABCDatetimeArray) assert not isinstance(self.datetime_index, gt.ABCDatetimeArray) assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray) assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray)
Example #4
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
Example #5
Source File: test_generic.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset)
Example #6
Source File: excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _format_regular_rows(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, Index)) if has_aliases or self.header: self.rowcounter += 1 # output index and index_label? if self.index: # check aliases # if list only take first as this is not a MultiIndex if (self.index_label and isinstance(self.index_label, (list, tuple, np.ndarray, Index))): index_label = self.index_label[0] # if string good to go elif self.index_label and isinstance(self.index_label, str): index_label = self.index_label else: index_label = self.df.index.names[0] if isinstance(self.columns, ABCMultiIndex): self.rowcounter += 1 if index_label and self.header is not False: yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style) # write index_values index_values = self.df.index if isinstance(self.df.index, ABCPeriodIndex): index_values = self.df.index.to_timestamp() for idx, idxval in enumerate(index_values): yield ExcelCell(self.rowcounter + idx, 0, idxval, self.header_style) coloffset = 1 else: coloffset = 0 for cell in self._generate_body(coloffset): yield cell
Example #7
Source File: excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _format_body(self): if isinstance(self.df.index, ABCMultiIndex): return self._format_hierarchical_rows() else: return self._format_regular_rows()
Example #8
Source File: html.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def write_style(self): # We use the "scoped" attribute here so that the desired # style properties for the data frame are not then applied # throughout the entire notebook. template_first = """\ <style scoped>""" template_last = """\ </style>""" template_select = """\ .dataframe %s { %s: %s; }""" element_props = [('tbody tr th:only-of-type', 'vertical-align', 'middle'), ('tbody tr th', 'vertical-align', 'top')] if isinstance(self.columns, ABCMultiIndex): element_props.append(('thead tr th', 'text-align', 'left')) if self.show_row_idx_names: element_props.append(('thead tr:last-of-type th', 'text-align', 'right')) else: element_props.append(('thead th', 'text-align', 'right')) template_mid = '\n\n'.join(map(lambda t: template_select % t, element_props)) template = dedent('\n'.join((template_first, template_mid, template_last))) self.write(template)
Example #9
Source File: html.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _write_body(self, indent): self.write('<tbody>', indent) fmt_values = {i: self.fmt._format_col(i) for i in range(self.ncols)} # write values if self.fmt.index and isinstance(self.frame.index, ABCMultiIndex): self._write_hierarchical_rows( fmt_values, indent + self.indent_delta) else: self._write_regular_rows( fmt_values, indent + self.indent_delta) self.write('</tbody>', indent)
Example #10
Source File: test_generic.py From recruit with Apache License 2.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): simplefilter('ignore', FutureWarning) assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) assert isinstance(self.datetime_array, gt.ABCDatetimeArray) assert not isinstance(self.datetime_index, gt.ABCDatetimeArray) assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray) assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray)
Example #11
Source File: test_generic.py From vnpy_crypto with MIT License | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
Example #12
Source File: excel.py From recruit with Apache License 2.0 | 5 votes |
def _format_regular_rows(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, Index)) if has_aliases or self.header: self.rowcounter += 1 # output index and index_label? if self.index: # check aliases # if list only take first as this is not a MultiIndex if (self.index_label and isinstance(self.index_label, (list, tuple, np.ndarray, Index))): index_label = self.index_label[0] # if string good to go elif self.index_label and isinstance(self.index_label, str): index_label = self.index_label else: index_label = self.df.index.names[0] if isinstance(self.columns, ABCMultiIndex): self.rowcounter += 1 if index_label and self.header is not False: yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style) # write index_values index_values = self.df.index if isinstance(self.df.index, ABCPeriodIndex): index_values = self.df.index.to_timestamp() for idx, idxval in enumerate(index_values): yield ExcelCell(self.rowcounter + idx, 0, idxval, self.header_style) coloffset = 1 else: coloffset = 0 for cell in self._generate_body(coloffset): yield cell
Example #13
Source File: excel.py From recruit with Apache License 2.0 | 5 votes |
def _format_body(self): if isinstance(self.df.index, ABCMultiIndex): return self._format_hierarchical_rows() else: return self._format_regular_rows()
Example #14
Source File: html.py From recruit with Apache License 2.0 | 5 votes |
def write_style(self): # We use the "scoped" attribute here so that the desired # style properties for the data frame are not then applied # throughout the entire notebook. template_first = """\ <style scoped>""" template_last = """\ </style>""" template_select = """\ .dataframe %s { %s: %s; }""" element_props = [('tbody tr th:only-of-type', 'vertical-align', 'middle'), ('tbody tr th', 'vertical-align', 'top')] if isinstance(self.columns, ABCMultiIndex): element_props.append(('thead tr th', 'text-align', 'left')) if self.show_row_idx_names: element_props.append(('thead tr:last-of-type th', 'text-align', 'right')) else: element_props.append(('thead th', 'text-align', 'right')) template_mid = '\n\n'.join(map(lambda t: template_select % t, element_props)) template = dedent('\n'.join((template_first, template_mid, template_last))) self.write(template)
Example #15
Source File: html.py From recruit with Apache License 2.0 | 5 votes |
def _write_body(self, indent): self.write('<tbody>', indent) fmt_values = {i: self.fmt._format_col(i) for i in range(self.ncols)} # write values if self.fmt.index and isinstance(self.frame.index, ABCMultiIndex): self._write_hierarchical_rows( fmt_values, indent + self.indent_delta) else: self._write_regular_rows( fmt_values, indent + self.indent_delta) self.write('</tbody>', indent)
Example #16
Source File: excel.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def _format_header_mi(self): if self.columns.nlevels > 1: if not self.index: raise NotImplementedError("Writing to Excel with MultiIndex" " columns and no index " "('index'=False) is not yet " "implemented.") has_aliases = isinstance(self.header, (tuple, list, np.ndarray, Index)) if not (has_aliases or self.header): return columns = self.columns level_strs = columns.format(sparsify=self.merge_cells, adjoin=False, names=False) level_lengths = get_level_lengths(level_strs) coloffset = 0 lnum = 0 if self.index and isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) - 1 if self.merge_cells: # Format multi-index as a merged cells. for lnum in range(len(level_lengths)): name = columns.names[lnum] yield ExcelCell(lnum, coloffset, name, self.header_style) for lnum, (spans, levels, level_codes) in enumerate(zip( level_lengths, columns.levels, columns.codes)): values = levels.take(level_codes) for i in spans: if spans[i] > 1: yield ExcelCell(lnum, coloffset + i + 1, values[i], self.header_style, lnum, coloffset + i + spans[i]) else: yield ExcelCell(lnum, coloffset + i + 1, values[i], self.header_style) else: # Format in legacy format with dots to indicate levels. for i, values in enumerate(zip(*level_strs)): v = ".".join(map(pprint_thing, values)) yield ExcelCell(lnum, coloffset + i + 1, v, self.header_style) self.rowcounter = lnum
Example #17
Source File: excel.py From recruit with Apache License 2.0 | 4 votes |
def _format_header_mi(self): if self.columns.nlevels > 1: if not self.index: raise NotImplementedError("Writing to Excel with MultiIndex" " columns and no index " "('index'=False) is not yet " "implemented.") has_aliases = isinstance(self.header, (tuple, list, np.ndarray, Index)) if not (has_aliases or self.header): return columns = self.columns level_strs = columns.format(sparsify=self.merge_cells, adjoin=False, names=False) level_lengths = get_level_lengths(level_strs) coloffset = 0 lnum = 0 if self.index and isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) - 1 if self.merge_cells: # Format multi-index as a merged cells. for lnum in range(len(level_lengths)): name = columns.names[lnum] yield ExcelCell(lnum, coloffset, name, self.header_style) for lnum, (spans, levels, level_codes) in enumerate(zip( level_lengths, columns.levels, columns.codes)): values = levels.take(level_codes) for i in spans: if spans[i] > 1: yield ExcelCell(lnum, coloffset + i + 1, values[i], self.header_style, lnum, coloffset + i + spans[i]) else: yield ExcelCell(lnum, coloffset + i + 1, values[i], self.header_style) else: # Format in legacy format with dots to indicate levels. for i, values in enumerate(zip(*level_strs)): v = ".".join(map(pprint_thing, values)) yield ExcelCell(lnum, coloffset + i + 1, v, self.header_style) self.rowcounter = lnum