Python pandas.core.dtypes.generic.ABCSparseSeries() Examples
The following are 13
code examples of pandas.core.dtypes.generic.ABCSparseSeries().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.dtypes.generic
, or try the search function
.
Example #1
Source File: test_generic.py From recruit with Apache License 2.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): simplefilter('ignore', FutureWarning) assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) assert isinstance(self.datetime_array, gt.ABCDatetimeArray) assert not isinstance(self.datetime_index, gt.ABCDatetimeArray) assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray) assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray)
Example #2
Source File: series.py From recruit with Apache License 2.0 | 5 votes |
def __init__(self, data=None, index=None, sparse_index=None, kind='block', fill_value=None, name=None, dtype=None, copy=False, fastpath=False): # TODO: Most of this should be refactored and shared with Series # 1. BlockManager -> array # 2. Series.index, Series.name, index, name reconciliation # 3. Implicit reindexing # 4. Implicit broadcasting # 5. Dict construction if data is None: data = [] elif isinstance(data, SingleBlockManager): index = data.index data = data.blocks[0].values elif isinstance(data, (ABCSeries, ABCSparseSeries)): index = data.index if index is None else index dtype = data.dtype if dtype is None else dtype name = data.name if name is None else name if index is not None: data = data.reindex(index) elif isinstance(data, compat.Mapping): data, index = Series()._init_dict(data, index=index) elif is_scalar(data) and index is not None: data = np.full(len(index), fill_value=data) super(SparseSeries, self).__init__( SparseArray(data, sparse_index=sparse_index, kind=kind, dtype=dtype, fill_value=fill_value, copy=copy), index=index, name=name, copy=False, fastpath=fastpath )
Example #3
Source File: sparse.py From recruit with Apache License 2.0 | 5 votes |
def __array_wrap__(self, array, context=None): from pandas.core.dtypes.generic import ABCSparseSeries ufunc, inputs, _ = context inputs = tuple(x.values if isinstance(x, ABCSparseSeries) else x for x in inputs) return self.__array_ufunc__(ufunc, '__call__', *inputs)
Example #4
Source File: sparse.py From recruit with Apache License 2.0 | 5 votes |
def _maybe_to_sparse(array): """ array must be SparseSeries or SparseArray """ if isinstance(array, ABCSparseSeries): array = array.values.copy() return array
Example #5
Source File: test_generic.py From vnpy_crypto with MIT License | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
Example #6
Source File: array.py From vnpy_crypto with MIT License | 5 votes |
def _maybe_to_sparse(array): """ array must be SparseSeries or SparseArray """ if isinstance(array, ABCSparseSeries): array = array.values.copy() return array
Example #7
Source File: test_generic.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): simplefilter('ignore', FutureWarning) assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval) assert isinstance(self.datetime_array, gt.ABCDatetimeArray) assert not isinstance(self.datetime_index, gt.ABCDatetimeArray) assert isinstance(self.timedelta_array, gt.ABCTimedeltaArray) assert not isinstance(self.timedelta_index, gt.ABCTimedeltaArray)
Example #8
Source File: series.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def __init__(self, data=None, index=None, sparse_index=None, kind='block', fill_value=None, name=None, dtype=None, copy=False, fastpath=False): # TODO: Most of this should be refactored and shared with Series # 1. BlockManager -> array # 2. Series.index, Series.name, index, name reconciliation # 3. Implicit reindexing # 4. Implicit broadcasting # 5. Dict construction if data is None: data = [] elif isinstance(data, SingleBlockManager): index = data.index data = data.blocks[0].values elif isinstance(data, (ABCSeries, ABCSparseSeries)): index = data.index if index is None else index dtype = data.dtype if dtype is None else dtype name = data.name if name is None else name if index is not None: data = data.reindex(index) elif isinstance(data, compat.Mapping): data, index = Series()._init_dict(data, index=index) elif is_scalar(data) and index is not None: data = np.full(len(index), fill_value=data) super(SparseSeries, self).__init__( SparseArray(data, sparse_index=sparse_index, kind=kind, dtype=dtype, fill_value=fill_value, copy=copy), index=index, name=name, copy=False, fastpath=fastpath )
Example #9
Source File: sparse.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def __array_wrap__(self, array, context=None): from pandas.core.dtypes.generic import ABCSparseSeries ufunc, inputs, _ = context inputs = tuple(x.values if isinstance(x, ABCSparseSeries) else x for x in inputs) return self.__array_ufunc__(ufunc, '__call__', *inputs)
Example #10
Source File: sparse.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def _maybe_to_sparse(array): """ array must be SparseSeries or SparseArray """ if isinstance(array, ABCSparseSeries): array = array.values.copy() return array
Example #11
Source File: test_generic.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset)
Example #12
Source File: test_generic.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_abc_types(self): assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndex) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCInt64Index) assert isinstance(pd.UInt64Index([1, 2, 3]), gt.ABCUInt64Index) assert isinstance(pd.Float64Index([1, 2, 3]), gt.ABCFloat64Index) assert isinstance(self.multi_index, gt.ABCMultiIndex) assert isinstance(self.datetime_index, gt.ABCDatetimeIndex) assert isinstance(self.timedelta_index, gt.ABCTimedeltaIndex) assert isinstance(self.period_index, gt.ABCPeriodIndex) assert isinstance(self.categorical_df.index, gt.ABCCategoricalIndex) assert isinstance(pd.Index(['a', 'b', 'c']), gt.ABCIndexClass) assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) with catch_warnings(record=True): assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) assert isinstance(self.categorical, gt.ABCCategorical) assert isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCPeriod) assert isinstance(pd.DateOffset(), gt.ABCDateOffset) assert isinstance(pd.Period('2012', freq='A-DEC').freq, gt.ABCDateOffset) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCDateOffset) assert isinstance(pd.Interval(0, 1.5), gt.ABCInterval) assert not isinstance(pd.Period('2012', freq='A-DEC'), gt.ABCInterval)
Example #13
Source File: array.py From vnpy_crypto with MIT License | 4 votes |
def __new__(cls, data, sparse_index=None, index=None, kind='integer', fill_value=None, dtype=None, copy=False): if index is not None: if data is None: data = np.nan if not is_scalar(data): raise Exception("must only pass scalars with an index ") dtype = infer_dtype_from_scalar(data)[0] data = construct_1d_arraylike_from_scalar( data, len(index), dtype) if isinstance(data, ABCSparseSeries): data = data.values is_sparse_array = isinstance(data, SparseArray) if dtype is not None: dtype = np.dtype(dtype) if is_sparse_array: sparse_index = data.sp_index values = data.sp_values fill_value = data.fill_value else: # array-like if sparse_index is None: if dtype is not None: data = np.asarray(data, dtype=dtype) res = make_sparse(data, kind=kind, fill_value=fill_value) values, sparse_index, fill_value = res else: values = _sanitize_values(data) if len(values) != sparse_index.npoints: raise AssertionError("Non array-like type {type} must " "have the same length as the index" .format(type=type(values))) # Create array, do *not* copy data by default if copy: subarr = np.array(values, dtype=dtype, copy=True) else: subarr = np.asarray(values, dtype=dtype) # Change the class of the array to be the subclass type. return cls._simple_new(subarr, sparse_index, fill_value)