Python torch.distributions.Normal() Examples

The following are 30 code examples of torch.distributions.Normal(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torch.distributions , or try the search function .
Example #1
Source File: loss.py    From 6-PACK with MIT License 6 votes vote down vote up
def __init__(self, num_key, num_cate):
        super(Loss, self).__init__(True)
        self.num_key = num_key
        self.num_cate = num_cate

        self.oneone = Variable(torch.ones(1)).cuda()

        self.normal = tdist.Normal(torch.tensor([0.0]), torch.tensor([0.0005]))

        self.pconf = torch.ones(num_key) / num_key
        self.pconf = Variable(self.pconf).cuda()

        self.sym_axis = Variable(torch.from_numpy(np.array([0, 1, 0]).astype(np.float32))).cuda().view(1, 3, 1)
        self.threezero = Variable(torch.from_numpy(np.array([0, 0, 0]).astype(np.float32))).cuda()

        self.zeros = torch.FloatTensor([0.0 for j in range(num_key-1) for i in range(num_key)]).cuda()

        self.select1 = torch.tensor([i for j in range(num_key-1) for i in range(num_key)]).cuda()
        self.select2 = torch.tensor([(i%num_key) for j in range(1, num_key) for i in range(j, j+num_key)]).cuda()

        self.knn = KNearestNeighbor(1) 
Example #2
Source File: utils.py    From pyfilter with MIT License 6 votes vote down vote up
def test_Stacker(self):
        # ===== Define a mix of parameters ====== #
        zerod = Parameter(Normal(0., 1.)).sample_((1000,))
        oned_luring = Parameter(Normal(torch.tensor([0.]), torch.tensor([1.]))).sample_(zerod.shape)
        oned = Parameter(MultivariateNormal(torch.zeros(2), torch.eye(2))).sample_(zerod.shape)

        mu = torch.zeros((3, 3))
        norm = Independent(Normal(mu, torch.ones_like(mu)), 2)
        twod = Parameter(norm).sample_(zerod.shape)

        # ===== Stack ===== #
        params = (zerod, oned, oned_luring, twod)
        stacked = stacker(params, lambda u: u.t_values, dim=1)

        # ===== Verify it's recreated correctly ====== #
        for p, m, ps in zip(params, stacked.mask, stacked.prev_shape):
            v = stacked.concated[..., m]

            if len(p.c_shape) != 0:
                v = v.reshape(*v.shape[:-1], *ps)

            assert (p.t_values == v).all() 
Example #3
Source File: utils.py    From pyfilter with MIT License 6 votes vote down vote up
def test_StateDict(self):
        # ===== Define model ===== #
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)
        linearobs = AffineObservations((fo, go), (1., 1.), norm)
        model = StateSpaceModel(linear, linearobs)

        # ===== Define filter ===== #
        filt = SISR(model, 100).initialize()

        # ===== Get statedict ===== #
        sd = filt.state_dict()

        # ===== Verify that we don't save multiple instances ===== #
        assert '_model' in sd and '_model' not in sd['_proposal']

        newfilt = SISR(model, 1000).load_state_dict(sd)
        assert newfilt._w_old is not None and newfilt.ssm is newfilt._proposal._model

        # ===== Test same with UKF and verify that we save UT ===== #
        ukf = UKF(model).initialize()
        sd = ukf.state_dict()

        assert '_model' in sd and '_model' not in sd['_ut'] 
Example #4
Source File: heads.py    From rl_algorithms with MIT License 6 votes vote down vote up
def forward(
        self, x: torch.Tensor, epsilon: float = 1e-6
    ) -> Tuple[torch.Tensor, ...]:
        """Forward method implementation."""
        mu, _, std = super(TanhGaussianDistParams, self).get_dist_params(x)

        # sampling actions
        dist = Normal(mu, std)
        z = dist.rsample()

        # normalize action and log_prob
        # see appendix C of 'https://arxiv.org/pdf/1812.05905.pdf'
        action = torch.tanh(z)
        log_prob = dist.log_prob(z) - torch.log(1 - action.pow(2) + epsilon)
        log_prob = log_prob.sum(-1, keepdim=True)

        return action, log_prob, z, mu, std 
Example #5
Source File: filters.py    From pyfilter with MIT License 6 votes vote down vote up
def test_SDE(self):
        def f(x, a, s):
            return -a * x

        def g(x, a, s):
            return s

        em = AffineEulerMaruyama((f, g), (0.02, 0.15), Normal(0., 1.), Normal(0., 1.), dt=1e-2, num_steps=10)
        model = LinearGaussianObservations(em, scale=1e-3)

        x, y = model.sample_path(500)

        for filt in [SISR(model, 500, proposal=Bootstrap()), UKF(model)]:
            filt = filt.initialize().longfilter(y)

            means = filt.result.filter_means
            if isinstance(filt, UKF):
                means = means[:, 0]

            self.assertLess(torch.std(x - means), 5e-2) 
Example #6
Source File: timeseries.py    From pyfilter with MIT License 6 votes vote down vote up
def test_SDE(self):
        shape = 1000, 100

        a = 1e-2 * torch.ones((shape[0], 1))
        dt = 0.1
        norm = Normal(0., math.sqrt(dt))

        init = Normal(a, 1.)
        sde = AffineEulerMaruyama((f_sde, g_sde), (a, 0.15), init, norm, dt=dt, num_steps=10)

        # ===== Initialize ===== #
        x = sde.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(sde.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = sde.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
Example #7
Source File: prob_utils.py    From vaeac with MIT License 6 votes vote down vote up
def normal_parse_params(params, min_sigma=0):
    """
    Take a Tensor (e. g. neural network output) and return
    torch.distributions.Normal distribution.
    This Normal distribution is component-wise independent,
    and its dimensionality depends on the input shape.
    First half of channels is mean of the distribution,
    the softplus of the second half is std (sigma), so there is
    no restrictions on the input tensor.

    min_sigma is the minimal value of sigma. I. e. if the above
    softplus is less than min_sigma, then sigma is clipped
    from below with value min_sigma. This regularization
    is required for the numerical stability and may be considered
    as a neural network architecture choice without any change
    to the probabilistic model.
    """
    n = params.shape[0]
    d = params.shape[1]
    mu = params[:, :d // 2]
    sigma_params = params[:, d // 2:]
    sigma = softplus(sigma_params)
    sigma = sigma.clamp(min=min_sigma)
    distr = Normal(mu, sigma)
    return distr 
Example #8
Source File: model.py    From pyfilter with MIT License 6 votes vote down vote up
def test_Sample(self):
        # ==== Hidden ==== #
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)

        # ==== Observable ===== #
        obs = AffineObservations((fo, go), (1., 0.), norm)

        # ===== Model ===== #
        mod = StateSpaceModel(linear, obs)

        # ===== Sample ===== #
        x, y = mod.sample_path(100)

        diff = ((x - y) ** 2).mean().sqrt()

        assert x.shape == y.shape and x.shape[0] == 100 and diff < 1e-3 
Example #9
Source File: ou.py    From pyfilter with MIT License 6 votes vote down vote up
def __init__(self, kappa, gamma, sigma, ndim: int, dt: float):
        """
        Implements the Ornstein-Uhlenbeck process.
        :param kappa: The reversion parameter
        :param gamma: The mean parameter
        :param sigma: The standard deviation
        :param ndim: The number of dimensions for the Brownian motion
        """

        def f(x: torch.Tensor, reversion: object, level: object, std: object):
            return level + (x - level) * torch.exp(-reversion * dt)

        def g(x: torch.Tensor, reversion: object, level: object, std: object):
            return std / (2 * reversion).sqrt() * (1 - torch.exp(-2 * reversion * dt)).sqrt()

        if ndim > 1:
            dist = Independent(Normal(torch.zeros(ndim), torch.ones(ndim)), 1)
        else:
            dist = Normal(0., 1)

        super().__init__((f, g), (kappa, gamma, sigma), dist, dist) 
Example #10
Source File: timeseries.py    From pyfilter with MIT License 6 votes vote down vote up
def test_MultiDimensional(self):
        mu = torch.zeros(2)
        scale = torch.ones_like(mu)

        shape = 1000, 100

        mvn = Independent(Normal(mu, scale), 1)
        mvn = AffineProcess((f, g), (1., 1.), mvn, mvn)

        # ===== Initialize ===== #
        x = mvn.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(mvn.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape, *mu.shape]))

        # ===== Sample path ===== #
        path = mvn.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
Example #11
Source File: tanh_normal.py    From garage with MIT License 6 votes vote down vote up
def _from_distribution(cls, new_normal):
        """Construct a new TanhNormal distribution from a normal distribution.

        Args:
            new_normal (Independent(Normal)): underlying normal dist for
                the new TanhNormal distribution.

        Returns:
            TanhNormal: A new distribution whose underlying normal dist
                is new_normal.

        """
        # pylint: disable=protected-access
        new = cls(torch.zeros(1), torch.zeros(1))
        new._normal = new_normal
        return new 
Example #12
Source File: sir.py    From pyfilter with MIT License 6 votes vote down vote up
def __init__(self, theta, initial_dist, dt, num_steps=10):
        """
        Similar as `OneFactorFractionalStochasticSIR`, but we now have two sources of randomness originating from shocks
        to both paramters `beta` and `gamma`.
        :param theta: The parameters (beta, gamma, sigma, eta)
        """

        if initial_dist.event_shape != torch.Size([3]):
            raise NotImplementedError('Must be of size 3!')

        def g(x, gamma, beta, sigma, eps):
            s = torch.zeros((*x.shape[:-1], 3, 2), device=x.device)

            s[..., 0, 0] = -sigma * x[..., 0] * x[..., 1]
            s[..., 1, 0] = -s[..., 0, 0]
            s[..., 1, 1] = -eps * x[..., 1]
            s[..., 2, 1] = -s[..., 1, 1]

            return s

        f_ = lambda u, beta, gamma, sigma, eps: f(u, beta, gamma, sigma)
        inc_dist = Independent(Normal(torch.zeros(2), math.sqrt(dt) * torch.ones(2)), 1)

        super().__init__((f_, g), theta, initial_dist, inc_dist, dt=dt, num_steps=num_steps) 
Example #13
Source File: tanh_normal.py    From garage with MIT License 6 votes vote down vote up
def rsample_with_pre_tanh_value(self, sample_shape=torch.Size()):
        """Return a sample, sampled from this TanhNormal distribution.

        Returns the sampled value before the tanh transform is applied and the
        sampled value with the tanh transform applied to it.

        Args:
            sample_shape (list): shape of the return.

        Note:
            Gradients pass through this operation.

        Returns:
            torch.Tensor: Samples from this distribution.
            torch.Tensor: Samples from the underlying
                :obj:`torch.distributions.Normal` distribution, prior to being
                transformed with `tanh`.

        """
        z = self._normal.rsample(sample_shape)
        return z, torch.tanh(z) 
Example #14
Source File: linear.py    From pyfilter with MIT License 6 votes vote down vote up
def __init__(self, hidden, a=1., scale=1.):
        """
        Implements a State Space model that's linear in the observation equation but has arbitrary dynamics in the
        state process.
        :param hidden: The hidden dynamics
        :param a: The A-matrix
        :param scale: The variance of the observations
        """

        # ===== Convoluted way to decide number of dimensions ===== #
        dim, is_1d = _get_shape(a)

        # ====== Define distributions ===== #
        n = dists.Normal(0., 1.) if is_1d else dists.Independent(dists.Normal(torch.zeros(dim), torch.ones(dim)), 1)

        if not isinstance(scale, (torch.Tensor, float, dists.Distribution)):
            raise ValueError(f'`scale` parameter must be numeric type!')

        super().__init__(hidden, a, scale, n) 
Example #15
Source File: timeseries.py    From pyfilter with MIT License 6 votes vote down vote up
def test_BatchedParameter(self):
        norm = Normal(0., 1.)
        shape = 1000, 100

        a = torch.ones((shape[0], 1))

        init = Normal(a, 1.)
        linear = AffineProcess((f, g), (a, 1.), init, norm)

        # ===== Initialize ===== #
        x = linear.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(linear.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = linear.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
Example #16
Source File: timeseries.py    From pyfilter with MIT License 6 votes vote down vote up
def test_LinearBatch(self):
        norm = Normal(0., 1.)
        linear = AffineProcess((f, g), (1., 1.), norm, norm)

        # ===== Initialize ===== #
        shape = 1000, 100
        x = linear.i_sample(shape)

        # ===== Propagate ===== #
        num = 100
        samps = [x]
        for t in range(num):
            samps.append(linear.propagate(samps[-1]))

        samps = torch.stack(samps)
        self.assertEqual(samps.size(), torch.Size([num + 1, *shape]))

        # ===== Sample path ===== #
        path = linear.sample_path(num + 1, shape)
        self.assertEqual(samps.shape, path.shape) 
Example #17
Source File: vae.py    From torchsupport with MIT License 5 votes vote down vote up
def normal_kl_loss(mean, logvar, r_mean=None, r_logvar=None):
  if r_mean is None or r_logvar is None:
    result = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp(), dim=0)
  else:
    distribution = Normal(mean, torch.exp(0.5 * logvar))
    reference = Normal(r_mean, torch.exp(0.5 * r_logvar))
    result = kl_divergence(distribution, reference)
  return result.sum() 
Example #18
Source File: learners.py    From TorchFusion with MIT License 5 votes vote down vote up
def train(self, train_loader, gen_optimizer, disc_optimizer, latent_size,relative_mode=True, dist=distribution.Normal(0, 1),
                  num_classes=0, num_samples=5,**kwargs):

        self.latent_size = latent_size
        self.dist = dist
        self.classes = num_classes
        self.num_samples = num_samples
        self.conditional = (num_classes > 0)
        self.relative_mode = relative_mode

        super().__train_loop__(train_loader, gen_optimizer, disc_optimizer, **kwargs) 
Example #19
Source File: vae.py    From torchsupport with MIT License 5 votes vote down vote up
def sample(self, mean, logvar, probabilities):
    normal = Normal(mean, torch.exp(0.5 * logvar))
    categorical = RelaxedOneHotCategorical(
      self.temperature,
      probabilities
    )
    return normal.rsample(), categorical.rsample() 
Example #20
Source File: vae.py    From torchsupport with MIT License 5 votes vote down vote up
def sample(self, mean, logvar):
    distribution = Normal(mean, torch.exp(0.5 * logvar))
    sample = distribution.rsample()
    return sample 
Example #21
Source File: rlwe.py    From PySyft with Apache License 2.0 5 votes vote down vote up
def sample_poly_normal(param):
    """Generate a polynomial from normal distribution where negative values are
    represented as (modulus - value) a positive value.

    Args:
        parms (EncryptionParam): Encryption parameters.

    Returns:
        A 2-dim list having integer from normal distributions.
    """
    coeff_modulus = param.coeff_modulus
    coeff_mod_size = len(coeff_modulus)
    coeff_count = param.poly_modulus

    result = [0] * coeff_mod_size
    for i in range(coeff_mod_size):
        result[i] = [0] * coeff_count

    for i in range(coeff_count):
        noise = Normal(th.tensor([0.0]), th.tensor(NOISE_STANDARD_DEVIATION))
        noise = int(noise.sample().item())
        if noise > 0:
            for j in range(coeff_mod_size):
                result[j][i] = noise
        elif noise < 0:
            noise = -noise
            for j in range(coeff_mod_size):
                result[j][i] = coeff_modulus[j] - noise
        else:
            for j in range(coeff_mod_size):
                result[j][i] = 0
    return result 
Example #22
Source File: set_mnist_ebm.py    From torchsupport with MIT License 5 votes vote down vote up
def forward(self, image, condition):
    image = image.view(-1, 28 * 28)
    out = self.input_process(self.input(image))
    mean, logvar = self.condition(condition)
    #distribution = Normal(mean, torch.exp(0.5 * logvar))
    sample = mean + torch.randn_like(mean) * torch.exp(0.5 * logvar)#distribution.rsample()
    cond = self.postprocess(sample)
    cond = torch.repeat_interleave(cond, 5, dim=0)
    result = self.combine(torch.cat((out, cond), dim=1))
    return result, (mean, logvar) 
Example #23
Source File: set_yeast_ebm.py    From torchsupport with MIT License 5 votes vote down vote up
def forward(self, image, condition):
    image = image.view(-1, 3, 64, 64)
    out = self.input_process(self.input(image))
    mean, logvar = self.condition(condition)
    #distribution = Normal(mean, torch.exp(0.5 * logvar))
    sample = mean + torch.randn_like(mean) * torch.exp(0.5 * logvar)#distribution.rsample()
    cond = self.postprocess(sample)
    cond = torch.repeat_interleave(cond, 5, dim=0)
    result = self.combine(torch.cat((out, cond), dim=1))
    return result, (mean, logvar) 
Example #24
Source File: set_mnist_gan.py    From torchsupport with MIT License 5 votes vote down vote up
def forward(self, data):
    support, values = data
    mean, logvar = self.encoder(support)
    distribution = Normal(mean, torch.exp(0.5 * logvar))
    latent_sample = distribution.rsample()
    latent_sample = torch.repeat_interleave(latent_sample, self.size, dim=0)
    combined = torch.cat((values.view(-1, 28 * 28), latent_sample), dim=1)
    return self.verdict(combined) 
Example #25
Source File: set_mnist_gan.py    From torchsupport with MIT License 5 votes vote down vote up
def sample(self, data):
    support, values = data
    mean, logvar = self.condition(support)
    distribution = Normal(mean, torch.exp(0.5 * logvar))
    latent_sample = distribution.rsample()
    latent_sample = torch.repeat_interleave(latent_sample, self.size, dim=0)
    local_samples = torch.randn(support.size(0) * self.size, 16)
    sample = torch.cat((latent_sample, local_samples), dim=1)
    return (support, sample), (mean, logvar) 
Example #26
Source File: distributions.py    From leap with MIT License 5 votes vote down vote up
def rsample(self, return_pretanh_value=False):
        """
        Sampling in the reparameterization case.
        """
        z = self.normal_mean + \
            self.normal_std * \
            ptu.Variable(
                Normal(torch.zeros(self.normal_mean.size()), torch.ones(self.normal_std.size())).sample(),
                requires_grad=False)

        if return_pretanh_value:
            return torch.tanh(z), z
        else:
            return torch.tanh(z) 
Example #27
Source File: distributions.py    From leap with MIT License 5 votes vote down vote up
def __init__(self, normal_mean, normal_std, epsilon=1e-6):
        """
        :param normal_mean: Mean of the normal distribution
        :param normal_std: Std of the normal distribution
        :param epsilon: Numerical stability epsilon when computing log-prob.
        """
        self.normal_mean = normal_mean
        self.normal_std = normal_std
        self.normal = Normal(normal_mean, normal_std)
        self.epsilon = epsilon 
Example #28
Source File: toy_runner.py    From ncsn with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, radius, width):
        self.radius = radius
        self.width = width
        self.r_dist = Normal(loc=radius, scale=width) 
Example #29
Source File: tanh_normal.py    From garage with MIT License 5 votes vote down vote up
def __init__(self, loc, scale):
        self._normal = Independent(Normal(loc, scale), 1)
        super().__init__() 
Example #30
Source File: vae.py    From scVI with MIT License 5 votes vote down vote up
def sample_from_posterior_z(
        self, x, y=None, give_mean=False, n_samples=5000
    ) -> torch.Tensor:
        """Samples the tensor of latent values from the posterior

        Parameters
        ----------
        x
            tensor of values with shape ``(batch_size, n_input)``
        y
            tensor of cell-types labels with shape ``(batch_size, n_labels)`` (Default value = None)
        give_mean
            is True when we want the mean of the posterior  distribution rather than sampling (Default value = False)
        n_samples
            how many MC samples to average over for transformed mean (Default value = 5000)

        Returns
        -------
        type
            tensor of shape ``(batch_size, n_latent)``

        """
        if self.log_variational:
            x = torch.log(1 + x)
        qz_m, qz_v, z = self.z_encoder(x, y)  # y only used in VAEC
        if give_mean:
            if self.latent_distribution == "ln":
                samples = Normal(qz_m, qz_v.sqrt()).sample([n_samples])
                z = self.z_encoder.z_transformation(samples)
                z = z.mean(dim=0)
            else:
                z = qz_m
        return z