Python talib.AD Examples
The following are 7
code examples of talib.AD().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
talib
, or try the search function
.
Example #1
Source File: data_preprocessing.py From StarTrader with MIT License | 22 votes |
def technical_indicators_df(self, daily_data): """ Assemble a dataframe of technical indicator series for a single stock """ o = daily_data['Open'].values c = daily_data['Close'].values h = daily_data['High'].values l = daily_data['Low'].values v = daily_data['Volume'].astype(float).values # define the technical analysis matrix # Most data series are normalized by their series' mean ta = pd.DataFrame() ta['MA5'] = tb.MA(c, timeperiod=5) / tb.MA(c, timeperiod=5).mean() ta['MA10'] = tb.MA(c, timeperiod=10) / tb.MA(c, timeperiod=10).mean() ta['MA20'] = tb.MA(c, timeperiod=20) / tb.MA(c, timeperiod=20).mean() ta['MA60'] = tb.MA(c, timeperiod=60) / tb.MA(c, timeperiod=60).mean() ta['MA120'] = tb.MA(c, timeperiod=120) / tb.MA(c, timeperiod=120).mean() ta['MA5'] = tb.MA(v, timeperiod=5) / tb.MA(v, timeperiod=5).mean() ta['MA10'] = tb.MA(v, timeperiod=10) / tb.MA(v, timeperiod=10).mean() ta['MA20'] = tb.MA(v, timeperiod=20) / tb.MA(v, timeperiod=20).mean() ta['ADX'] = tb.ADX(h, l, c, timeperiod=14) / tb.ADX(h, l, c, timeperiod=14).mean() ta['ADXR'] = tb.ADXR(h, l, c, timeperiod=14) / tb.ADXR(h, l, c, timeperiod=14).mean() ta['MACD'] = tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0] / \ tb.MACD(c, fastperiod=12, slowperiod=26, signalperiod=9)[0].mean() ta['RSI'] = tb.RSI(c, timeperiod=14) / tb.RSI(c, timeperiod=14).mean() ta['BBANDS_U'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0] / \ tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[0].mean() ta['BBANDS_M'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1] / \ tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[1].mean() ta['BBANDS_L'] = tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2] / \ tb.BBANDS(c, timeperiod=5, nbdevup=2, nbdevdn=2, matype=0)[2].mean() ta['AD'] = tb.AD(h, l, c, v) / tb.AD(h, l, c, v).mean() ta['ATR'] = tb.ATR(h, l, c, timeperiod=14) / tb.ATR(h, l, c, timeperiod=14).mean() ta['HT_DC'] = tb.HT_DCPERIOD(c) / tb.HT_DCPERIOD(c).mean() ta["High/Open"] = h / o ta["Low/Open"] = l / o ta["Close/Open"] = c / o self.ta = ta
Example #2
Source File: ta_indicator_mixin.py From strategy with Apache License 2.0 | 6 votes |
def ad(self, sym, frequency): if not self.kbars_ready(sym, frequency): return [] highs = self.high(sym, frequency) lows = self.low(sym, frequency) closes = self.close(sym, frequency) volumes = self.volume(sym, frequency) v = ta.AD(highs, lows, closes, volumes) return v
Example #3
Source File: ad.py From jesse with MIT License | 6 votes |
def ad(candles: np.ndarray, sequential=False) -> Union[float, np.ndarray]: """ AD - Chaikin A/D Line :param candles: np.ndarray :param sequential: bool - default=False :return: float | np.ndarray """ if not sequential and len(candles) > 240: candles = candles[-240:] res = talib.AD(candles[:, 3], candles[:, 4], candles[:, 2], candles[:, 5]) if sequential: return res else: return None if np.isnan(res[-1]) else res[-1]
Example #4
Source File: talib_indicators.py From QUANTAXIS with MIT License | 5 votes |
def AD(DataFrame): res = talib.AD(DataFrame.high.values, DataFrame.low.values, DataFrame.close.values, DataFrame.volume.values) return pd.DataFrame({'AD': res}, index=DataFrame.index)
Example #5
Source File: talib_wrapper.py From tia with BSD 3-Clause "New" or "Revised" License | 5 votes |
def AD(frame, high_col='high', low_col='low', close_col='close', vol_col='Volume'): """Chaikin A/D Line""" return _frame_to_series(frame, [high_col, low_col, close_col, vol_col], talib.AD)
Example #6
Source File: test_indicator_volume.py From pandas-ta with MIT License | 5 votes |
def test_ad(self): result = pandas_ta.ad(self.high, self.low, self.close, self.volume_) self.assertIsInstance(result, Series) self.assertEqual(result.name, 'AD') try: expected = tal.AD(self.high, self.low, self.close, self.volume_) pdt.assert_series_equal(result, expected, check_names=False) except AssertionError as ae: try: corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION) self.assertGreater(corr, CORRELATION_THRESHOLD) except Exception as ex: error_analysis(result, CORRELATION, ex)
Example #7
Source File: talib_indicators.py From qtpylib with Apache License 2.0 | 5 votes |
def AD(data, **kwargs): _check_talib_presence() popen, phigh, plow, pclose, pvolume = _extract_ohlc(data) return talib.AD(popen, phigh, plow, pclose, pvolume, **kwargs)