Python talib.ROCR Examples
The following are 7
code examples of talib.ROCR().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
talib
, or try the search function
.
Example #1
Source File: apriori.py From cryptotrader with MIT License | 6 votes |
def rebalance(self, obs): """ Performs portfolio rebalance within environment :param obs: pandas DataFrame: Environment observation :return: numpy array: Portfolio vector """ if not self.init: n_pairs = obs.columns.levels[0].shape[0] action = np.ones(n_pairs) action[-1] = 0 self.crp = array_normalize(action) self.init = True if self.step: x = self.predict(obs) price_relative = obs.xs('open', level=1, axis=1).apply(lambda x: ta.ROCR(x, timeperiod=1), raw=True).fillna(1.0) cov_mat = price_relative.cov() return self.update(cov_mat, x) else: return self.crp
Example #2
Source File: apriori.py From cryptotrader with MIT License | 6 votes |
def rebalance(self, obs): """ Performs portfolio rebalance within environment :param obs: pandas DataFrame: Environment observation :return: numpy array: Portfolio vector """ if not self.init: n_pairs = obs.columns.levels[0].shape[0] action = np.ones(n_pairs) action[-1] = 0 self.crp = array_normalize(action) self.init = True if self.step: x = self.predict(obs) # x[self.fiat] = 1 * (1 - x.std()) price_relative = obs.xs('open', level=1, axis=1).apply(lambda x: ta.ROCR(x, timeperiod=1), raw=True).fillna(1.0) # price_relative[self.fiat] = 1 * (1 - price_relative.std(axis=1)) cov_mat = price_relative.cov() return self.update(cov_mat, x, self.target_return) else: return self.crp
Example #3
Source File: rocr.py From jesse with MIT License | 6 votes |
def rocr(candles: np.ndarray, period=10, source_type="close", sequential=False) -> Union[float, np.ndarray]: """ ROCR - Rate of change ratio: (price/prevPrice) :param candles: np.ndarray :param period: int - default=10 :param source_type: str - default: "close" :param sequential: bool - default=False :return: float | np.ndarray """ if not sequential and len(candles) > 240: candles = candles[-240:] source = get_candle_source(candles, source_type=source_type) res = talib.ROCR(source, timeperiod=period) if sequential: return res else: return None if np.isnan(res[-1]) else res[-1]
Example #4
Source File: kline_data.py From klineyes with MIT License | 6 votes |
def get_indicator(df, indicator): ret_df = df if 'MACD' in indicator: macd, macdsignal, macdhist = ta.MACD(df.close.values, fastperiod=12, slowperiod=26, signalperiod=9) ret_df = KlineData._merge_dataframe(pd.DataFrame([macd, macdsignal, macdhist]).T.rename(columns={0: "macddif", 1: "macddem", 2: "macdhist"}), ret_df) ret_df = KlineData._merge_dataframe(line_intersections(ret_df, columns=['macddif', 'macddem']), ret_df) if 'MFI' in indicator: real = ta.MFI(df.high.values, df.low.values, df.close.values, df.volume.values, timeperiod=14) ret_df = KlineData._merge_dataframe(pd.DataFrame([real]).T.rename(columns={0: "mfi"}), ret_df) if 'ATR' in indicator: real = ta.NATR(df.high.values, df.low.values, df.close.values, timeperiod=14) ret_df = KlineData._merge_dataframe(pd.DataFrame([real]).T.rename(columns={0: "atr"}), ret_df) if 'ROCR' in indicator: real = ta.ROCR(df.close.values, timeperiod=10) ret_df = KlineData._merge_dataframe(pd.DataFrame([real]).T.rename(columns={0: "rocr"}), ret_df) ret_df['date'] = pd.to_datetime(ret_df['date'], format='%Y-%m-%d') return ret_df
Example #5
Source File: apriori.py From cryptotrader with MIT License | 5 votes |
def price_relative(obs, period=1): prices = obs.xs('open', level=1, axis=1).astype(np.float64) price_relative = prices.apply(ta.ROCR, timeperiod=period, raw=True).fillna(1.0) return price_relative
Example #6
Source File: ta.py From dash-technical-charting with MIT License | 5 votes |
def add_ROCR(self, timeperiod=10, type='line', color='tertiary', **kwargs): """Rate of Change (Ratio).""" if not self.has_close: raise Exception() utils.kwargs_check(kwargs, VALID_TA_KWARGS) if 'kind' in kwargs: type = kwargs['kind'] name = 'ROCR({})'.format(str(timeperiod)) self.sec[name] = dict(type=type, color=color) self.ind[name] = talib.ROCR(self.df[self.cl].values, timeperiod)
Example #7
Source File: talib_indicators.py From qtpylib with Apache License 2.0 | 5 votes |
def ROCR(data, **kwargs): _check_talib_presence() prices = _extract_series(data) return talib.ROCR(prices, **kwargs)