Python mne.set_log_level() Examples
The following are 5
code examples of mne.set_log_level().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mne
, or try the search function
.
Example #1
Source File: utils.py From autoreject with BSD 3-Clause "New" or "Revised" License | 6 votes |
def interpolate_bads(inst, picks, dots=None, reset_bads=True, mode='accurate'): """Interpolate bad MEG and EEG channels.""" import mne # to prevent cobyla printf error # XXX putting to critical for now unless better solution # emerges verbose = mne.set_log_level('CRITICAL', return_old_level=True) eeg_picks = set(pick_types(inst.info, meg=False, eeg=True, exclude=[])) eeg_picks_interp = [p for p in picks if p in eeg_picks] if len(eeg_picks_interp) > 0: _interpolate_bads_eeg(inst, picks=eeg_picks_interp) meg_picks = set(pick_types(inst.info, meg=True, eeg=False, exclude=[])) meg_picks_interp = [p for p in picks if p in meg_picks] if len(meg_picks_interp) > 0: _interpolate_bads_meg_fast(inst, picks=meg_picks_interp, dots=dots, mode=mode) if reset_bads is True: inst.info['bads'] = [] mne.set_log_level(verbose) return inst
Example #2
Source File: utils.py From autoreject with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _fast_map_meg_channels(info, pick_from, pick_to, dots=None, mode='fast'): from mne.io.pick import pick_info from mne.forward._field_interpolation import _setup_dots from mne.forward._field_interpolation import _compute_mapping_matrix from mne.forward._make_forward import _create_meg_coils, _read_coil_defs from mne.bem import _check_origin miss = 1e-4 # Smoothing criterion for MEG # XXX: hack to silence _compute_mapping_matrix verbose = mne.get_config('MNE_LOGGING_LEVEL', 'INFO') mne.set_log_level('WARNING') info_from = pick_info(info, pick_from, copy=True) templates = _read_coil_defs() coils_from = _create_meg_coils(info_from['chs'], 'normal', info_from['dev_head_t'], templates) my_origin = _check_origin((0., 0., 0.04), info_from) int_rad, noise, lut_fun, n_fact = _setup_dots(mode, coils_from, 'meg') # This function needs a clean input. It hates the presence of other # channels than MEG channels. Make sure all is picked. if dots is None: dots = self_dots, cross_dots = _compute_dots(info, mode=mode) else: self_dots, cross_dots = dots self_dots, cross_dots = _pick_dots(dots, pick_from, pick_to) ch_names = [c['ch_name'] for c in info_from['chs']] fmd = dict(kind='meg', ch_names=ch_names, origin=my_origin, noise=noise, self_dots=self_dots, surface_dots=cross_dots, int_rad=int_rad, miss=miss) fmd['data'] = _compute_mapping_matrix(fmd, info_from) mne.set_log_level(verbose) return fmd['data']
Example #3
Source File: conftest.py From pyprep with MIT License | 5 votes |
def raw(): """Fixture for physionet EEG subject 4, dataset 1.""" mne.set_log_level("WARNING") # load in subject 1, run 1 dataset edf_fpath = eegbci.load_data(4, 1, update_path=True)[0] # using sample EEG data (https://physionet.org/content/eegmmidb/1.0.0/) raw = mne.io.read_raw_edf(edf_fpath, preload=True) # The eegbci data has non-standard channel names. We need to rename them: eegbci.standardize(raw) return raw
Example #4
Source File: hcp.py From alphacsc with BSD 3-Clause "New" or "Revised" License | 4 votes |
def load_data(n_trials=10, data_type='rest', sfreq=150, epoch=None, filter_params=[5., None], equalize="zeropad", n_jobs=1, random_state=None): """Load and prepare the HCP dataset for multiCSC Parameters ---------- n_trials : int Number of recordings that are loaded. data_type : str Type of recordings loaded. Should be in {'rest', 'task_working_memory', 'task_motor', 'task_story_math', 'noise_empty_room', 'noise_subject'}. sfreq : float Sampling frequency of the signal. The data are resampled to match it. epoch : tuple or None If set to a tuple, extract epochs from the raw data, using t_min=epoch[0] and t_max=epoch[1]. Else, use the raw signal, divided in n_splits chunks. filter_params : tuple Frequency cut for a band pass filter applied to the signals. The default is a high-pass filter with frequency cut at 2Hz. n_jobs : int Number of jobs that can be used for preparing (filtering) the data. random_state : int | None State to seed the random number generator. Return ------ X : ndarray, shape (n_trials, n_channels, n_times) Signals loaded from HCP. info : list of mne.Info List of the info related to each signals. """ if data_type == "rest" and epoch is not None: raise ValueError("epoch != None is not valid with resting-state data.") rng = check_random_state(random_state) mne.set_log_level(30) db = get_all_records() records = [(subject, run_index) for subject, runs in db[data_type].items() for run_index in runs] X, info = [], [] records = rng.permutation(records)[:n_trials] for i, (subject, run_index) in enumerate(records): print("\rLoading HCP subjects: {:7.2%}".format(i / n_trials), end='', flush=True) X_n, info_n = load_one_record( data_type, subject, int(run_index), sfreq=sfreq, epoch=epoch, filter_params=filter_params, n_jobs=n_jobs) X += [X_n] info += [info_n] print("\rLoading HCP subjects: done ") X = make_array(X, equalize=equalize) X /= np.std(X) return X, info
Example #5
Source File: hcp.py From alphacsc with BSD 3-Clause "New" or "Revised" License | 4 votes |
def data_generator(n_trials=10, data_type='rest', sfreq=150, epoch=None, filter_params=[5., None], equalize="zeropad", n_jobs=1, random_state=None): """Generator loading subjects from the HCP dataset for multiCSC Parameters ---------- n_trials : int Number of recordings that are loaded. data_type : str Type of recordings loaded. Should be in {'rest', 'task_working_memory', 'task_motor', 'task_story_math', 'noise_empty_room', 'noise_subject'}. sfreq : float Sampling frequency of the signal. The data are resampled to match it. epoch : tuple or None If set to a tuple, extract epochs from the raw data, using t_min=epoch[0] and t_max=epoch[1]. Else, use the raw signal, divided in n_splits chunks. filter_params : tuple Frequency cut for a band pass filter applied to the signals. The default is a high-pass filter with frequency cut at 2Hz. n_jobs : int Number of jobs that can be used for preparing (filtering) the data. random_state : int | None State to seed the random number generator. Yields ------ X : ndarray, shape (1, n_channels, n_times) Signals loaded from HCP. info : list of mne.Info info related to this signal. """ if data_type == "rest" and epoch is not None: raise ValueError("epoch != None is not valid with resting-state data.") rng = check_random_state(random_state) mne.set_log_level(30) db = get_all_records() records = [(subject, run_index) for subject, runs in db[data_type].items() for run_index in runs] records = rng.permutation(records)[:n_trials] for i, (subject, run_index) in enumerate(records): try: X_n, info_n = load_one_record( data_type, subject, int(run_index), sfreq=sfreq, epoch=epoch, filter_params=filter_params, n_jobs=n_jobs) X_n /= X_n.std() yield X_n, info_n except UnicodeDecodeError: print("failed to load {}-{}-{}" .format(subject, data_type, run_index))