Python utils.constants.UNIVARIATE_DATASET_NAMES Examples

The following are 7 code examples of utils.constants.UNIVARIATE_DATASET_NAMES(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utils.constants , or try the search function .
Example #1
Source File: utils.py    From bigdata18 with GNU General Public License v3.0 6 votes vote down vote up
def read_all_datasets(root_dir,archive_name):
    datasets_dict = {}

    dataset_names_to_sort = []

    for dataset_name in DATASET_NAMES:
        root_dir_dataset =root_dir+'/archives/'+archive_name+'/'+dataset_name+'/'
        file_name = root_dir_dataset+dataset_name
        x_train, y_train = readucr(file_name+'_TRAIN')
        x_test, y_test = readucr(file_name+'_TEST')

        datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_test.copy(),
                y_test.copy())

        dataset_names_to_sort.append((dataset_name,len(x_train)))

    dataset_names_to_sort.sort(key=operator.itemgetter(1))

    for i in range(len(DATASET_NAMES)):
        DATASET_NAMES[i] = dataset_names_to_sort[i][0]

    return datasets_dict 
Example #2
Source File: utils.py    From aaltd18 with GNU General Public License v3.0 6 votes vote down vote up
def read_all_datasets(root_dir,archive_name, sort_dataset_name = False):
    datasets_dict = {}

    dataset_names_to_sort = []
    
    for dataset_name in DATASET_NAMES: 
        file_name = root_dir+archive_name+'/'+dataset_name+'/'+dataset_name
        x_train, y_train = readucr(file_name+'_TRAIN')
        x_test, y_test = readucr(file_name+'_TEST')
        datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_test.copy(),y_test.copy())
        dataset_names_to_sort.append((dataset_name,len(x_train)))
    
    item_getter = 1
    if sort_dataset_name == True: 
        item_getter = 0
    dataset_names_to_sort.sort(key=operator.itemgetter(item_getter))
    
    for i in range(len(DATASET_NAMES)):
        DATASET_NAMES[i] = dataset_names_to_sort[i][0]
    
    return datasets_dict 
Example #3
Source File: utils.py    From bigdata18 with GNU General Public License v3.0 5 votes vote down vote up
def add_results_from_bake_off(df_res,df_res_bake_off,
    classifiers_to_add=['COTE','ST','BOSS','EE','PF','DTW_R1_1NN']):
    df_res_bake_off_to_add = df_res_bake_off.loc[\
        df_res_bake_off['classifier_name'].isin(classifiers_to_add) \
            & df_res_bake_off['dataset_name'].isin(DATASET_NAMES)]
    pd_bake_off = pd.concat([df_res,df_res_bake_off_to_add],sort=False)
    return pd_bake_off 
Example #4
Source File: utils.py    From bigdata18 with GNU General Public License v3.0 5 votes vote down vote up
def add_themes(df_perf):
    for dataset_name in DATASET_NAMES:
        df_perf.loc[df_perf['dataset_name']==dataset_name,'theme']= \
            utils.constants.dataset_types[dataset_name]
        df_perf.loc[df_perf['dataset_name'] == dataset_name, 'theme_colors'] = \
            utils.constants.themes_colors[utils.constants.dataset_types[dataset_name]]
    return df_perf 
Example #5
Source File: utils.py    From InceptionTime with GNU General Public License v3.0 5 votes vote down vote up
def read_all_datasets(root_dir, archive_name):
    datasets_dict = {}

    dataset_names_to_sort = []

    if archive_name == 'TSC':
        for dataset_name in DATASET_NAMES:
            root_dir_dataset = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/'
            file_name = root_dir_dataset + dataset_name
            x_train, y_train = readucr(file_name + '_TRAIN')
            x_test, y_test = readucr(file_name + '_TEST')

            datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
                                           y_test.copy())

            dataset_names_to_sort.append((dataset_name, len(x_train)))

        dataset_names_to_sort.sort(key=operator.itemgetter(1))

        for i in range(len(DATASET_NAMES)):
            DATASET_NAMES[i] = dataset_names_to_sort[i][0]

    elif archive_name == 'InlineSkateXPs':

        for dataset_name in utils.constants.dataset_names_for_archive[archive_name]:
            root_dir_dataset = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/'

            x_train = np.load(root_dir_dataset + 'x_train.npy')
            y_train = np.load(root_dir_dataset + 'y_train.npy')
            x_test = np.load(root_dir_dataset + 'x_test.npy')
            y_test = np.load(root_dir_dataset + 'y_test.npy')

            datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
                                           y_test.copy())
    elif archive_name == 'SITS':
        return read_sits_xps(root_dir)
    else:
        print('error in archive name')
        exit()

    return datasets_dict 
Example #6
Source File: utils.py    From ijcnn19ensemble with GNU General Public License v3.0 4 votes vote down vote up
def read_all_datasets(root_dir,archive_name, split_val = False): 
    datasets_dict = {}

    dataset_names_to_sort = []


    for dataset_name in DATASET_NAMES:
        root_dir_dataset =root_dir+'/archives/'+archive_name+'/'+dataset_name+'/'
        file_name = root_dir_dataset+dataset_name
        x_train, y_train = readucr(file_name+'_TRAIN')
        x_test, y_test = readucr(file_name+'_TEST')

        if split_val == True:
            # check if dataset has already been splitted
            temp_dir =root_dir_dataset+'TRAIN_VAL/'
            # print(temp_dir)
            train_test_dir = create_directory(temp_dir)
            # print(train_test_dir)
            if train_test_split is None:
                # then do no re-split because already splitted
                # read train set
                x_train,y_train = readucr(temp_dir+dataset_name+'_TRAIN')
                # read val set
                x_val,y_val = readucr(temp_dir+dataset_name+'_VAL')
            else:
                # split for cross validation set
                x_train,x_val,y_train,y_val  = train_test_split(x_train,y_train,
                    test_size=0.25)
                # concat train set
                train_set = np.zeros((y_train.shape[0],x_train.shape[1]+1),dtype=np.float64)
                train_set[:,0] = y_train
                train_set[:,1:] = x_train
                # concat val set
                val_set = np.zeros((y_val.shape[0],x_val.shape[1]+1),dtype=np.float64)
                val_set[:,0] = y_val
                val_set[:,1:] = x_val
                # save the train set
                np.savetxt(temp_dir+dataset_name+'_TRAIN',train_set,delimiter=',')
                # save the val set
                np.savetxt(temp_dir+dataset_name+'_VAL',val_set,delimiter=',')


            datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_val.copy(),
                y_val.copy(),x_test.copy(),y_test.copy())

        else:
            datasets_dict[dataset_name] = (x_train.copy(),y_train.copy(),x_test.copy(),
                y_test.copy())

        dataset_names_to_sort.append((dataset_name,len(x_train)))

    dataset_names_to_sort.sort(key=operator.itemgetter(1))

    for i in range(len(DATASET_NAMES)):
        DATASET_NAMES[i] = dataset_names_to_sort[i][0]

    return datasets_dict 
Example #7
Source File: ensembletransfer.py    From ijcnn19ensemble with GNU General Public License v3.0 4 votes vote down vote up
def fit(self, x_train, y_train, x_test, y_test, y_true):

        y_pred = np.zeros(shape=y_test.shape)

        l = 0

        for dataset in datasets_names:

            if dataset == self.dataset_name:
                continue

            curr_dir = self.transfer_directory+dataset+'/'+self.dataset_name+'/'

            predictions_file_name = curr_dir + 'y_pred.npy'

            if check_if_file_exits(predictions_file_name):
                # then load only the predictions from the file
                curr_y_pred = np.load(predictions_file_name)
            else:
                # predict from models saved
                model = keras.models.load_model(curr_dir+'best_model.hdf5')
                curr_y_pred = model.predict(x_test)
                keras.backend.clear_session()
                np.save(predictions_file_name, curr_y_pred)

            y_pred = y_pred + curr_y_pred

            l += 1

            keras.backend.clear_session()

        y_pred = y_pred / l

        # save predictions
        np.save(self.output_directory+'y_pred.npy',y_pred)

        # convert the predicted from binary to integer
        y_pred = np.argmax(y_pred, axis=1)

        df_metrics = calculate_metrics(y_true, y_pred, 0.0)

        df_metrics.to_csv(self.output_directory + 'df_metrics.csv', index=False)

        print(self.dataset_name,df_metrics['accuracy'][0])

        gc.collect()