Python mlflow.log_artifacts() Examples
The following are 10
code examples of mlflow.log_artifacts().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mlflow
, or try the search function
.
Example #1
Source File: mlflow_utils.py From nucleus7 with Mozilla Public License 2.0 | 6 votes |
def log_project_artifacts_to_mlflow(function: Callable): """ Log the artifact to mlflow Parameters ---------- function function to wrap """ @wraps(function) def wrapped(*args, **kwargs): if mlflow.active_run() is None: _warn_about_no_run() return function(*args, **kwargs) artifacts_path = project.get_active_artifacts_directory() artifacts_path_realpath = os.path.realpath(artifacts_path) mlflow.log_artifacts(artifacts_path_realpath) return function(*args, **kwargs) return wrapped # pylint: disable=invalid-name # this is method, not a constant, and is used inside of the patch
Example #2
Source File: etl_data.py From mlflow with Apache License 2.0 | 6 votes |
def etl_data(ratings_csv, max_row_limit): with mlflow.start_run() as mlrun: tmpdir = tempfile.mkdtemp() ratings_parquet_dir = os.path.join(tmpdir, 'ratings-parquet') spark = pyspark.sql.SparkSession.builder.getOrCreate() print("Converting ratings CSV %s to Parquet %s" % (ratings_csv, ratings_parquet_dir)) ratings_df = spark.read \ .option("header", "true") \ .option("inferSchema", "true") \ .csv(ratings_csv) \ .drop("timestamp") # Drop unused column ratings_df.show() if max_row_limit != -1: ratings_df = ratings_df.limit(max_row_limit) ratings_df.write.parquet(ratings_parquet_dir) print("Uploading Parquet ratings: %s" % ratings_parquet_dir) mlflow.log_artifacts(ratings_parquet_dir, "ratings-parquet-dir")
Example #3
Source File: mlflow.py From tf-yarn with Apache License 2.0 | 5 votes |
def log_artifacts(local_dir: str, artifact_path: str = None): mlflow.log_artifacts(local_dir, artifact_path)
Example #4
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_artifacts(cls, self): raise NotImplementedError()
Example #5
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_artifacts(cls, dir_path, artifact_path=None): raise NotImplementedError
Example #6
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_artifacts(cls, dir_path, artifact_path=None): try: mlflow.log_artifacts(dir_path, artifact_path) except ConnectionError: logger.warning(f"ConnectionError in logging artifacts to MLFlow") except Exception as e: logger.warning(f"Failed to log artifacts: {e}")
Example #7
Source File: loggers.py From OpenKiwi with GNU Affero General Public License v3.0 | 5 votes |
def log_artifacts(local_dir, artifact_path=None): return None
Example #8
Source File: loggers.py From OpenKiwi with GNU Affero General Public License v3.0 | 5 votes |
def log_artifacts(local_dir, artifact_path=None): def send(dpath, e, path): mlflow.log_artifacts(dpath, artifact_path=path) e.set() event = threading.Event() t = threading.Thread( target=send, args=(local_dir, event, artifact_path), daemon=True ) t.start() return event
Example #9
Source File: tensorflow.py From mlflow with Apache License 2.0 | 5 votes |
def _log_artifacts_with_warning(**kwargs): try_mlflow_log(mlflow.log_artifacts, **kwargs)
Example #10
Source File: test_tracking.py From mlflow with Apache License 2.0 | 5 votes |
def test_log_artifact(): artifact_src_dir = tempfile.mkdtemp() # Create artifacts _, path0 = tempfile.mkstemp(dir=artifact_src_dir) _, path1 = tempfile.mkstemp(dir=artifact_src_dir) for i, path in enumerate([path0, path1]): with open(path, "w") as handle: handle.write("%s" % str(i)) # Log an artifact, verify it exists in the directory returned by get_artifact_uri # after the run finishes artifact_parent_dirs = ["some_parent_dir", None] for parent_dir in artifact_parent_dirs: with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(path0, parent_dir) expected_dir = os.path.join(run_artifact_dir, parent_dir) \ if parent_dir is not None else run_artifact_dir assert os.listdir(expected_dir) == [os.path.basename(path0)] logged_artifact_path = os.path.join(expected_dir, path0) assert filecmp.cmp(logged_artifact_path, path0, shallow=False) # Log multiple artifacts, verify they exist in the directory returned by get_artifact_uri for parent_dir in artifact_parent_dirs: with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifacts(artifact_src_dir, parent_dir) # Check that the logged artifacts match expected_artifact_output_dir = os.path.join(run_artifact_dir, parent_dir) \ if parent_dir is not None else run_artifact_dir dir_comparison = filecmp.dircmp(artifact_src_dir, expected_artifact_output_dir) assert len(dir_comparison.left_only) == 0 assert len(dir_comparison.right_only) == 0 assert len(dir_comparison.diff_files) == 0 assert len(dir_comparison.funny_files) == 0