Python mlflow.log_params() Examples
The following are 14
code examples of mlflow.log_params().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mlflow
, or try the search function
.
Example #1
Source File: mlflow.py From tf-yarn with Apache License 2.0 | 5 votes |
def log_params(params: Dict[str, Any]): mlflow.log_params(params)
Example #2
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_params(cls, params): raise NotImplementedError()
Example #3
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_params(cls, params): logger.info(f"Logged parameters: \n {params}")
Example #4
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_params(cls, params): try: mlflow.log_params(params) except ConnectionError: logger.warning("ConnectionError in logging params to MLFlow") except Exception as e: logger.warning(f"Failed to log params: {e}")
Example #5
Source File: utils.py From FARM with Apache License 2.0 | 5 votes |
def log_params(cls, params): for key, value in params.items(): TensorBoardLogger.summary_writer.add_text(tag=key, text_string=str(value))
Example #6
Source File: config.py From theconf with MIT License | 5 votes |
def mlflow_log_pararms(self, key=None): mlflow.log_params(self.flatten(key)) return self
Example #7
Source File: autologging_utils.py From mlflow with Apache License 2.0 | 5 votes |
def log_fn_args_as_params(fn, args, kwargs, unlogged=[]): # pylint: disable=W0102 """ Log parameters explicitly passed to a function. :param fn: function whose parameters are to be logged :param args: arguments explicitly passed into fn :param kwargs: kwargs explicitly passed into fn :param unlogged: parameters not to be logged :return: None """ # all_default_values has length n, corresponding to values of the # last n elements in all_param_names pos_params, _, _, pos_defaults, kw_params, kw_defaults, _ = inspect.getfullargspec(fn) kw_params = list(kw_params) if kw_params else [] pos_defaults = list(pos_defaults) if pos_defaults else [] all_param_names = pos_params + kw_params all_default_values = pos_defaults + [kw_defaults[param] for param in kw_params] # Checking if default values are present for logging. Known bug that getargspec will return an # empty argspec for certain functions, despite the functions having an argspec. if all_default_values is not None and len(all_default_values) > 0: # Logging the default arguments not passed by the user defaults = get_unspecified_default_args(args, kwargs, all_param_names, all_default_values) for name in [name for name in defaults.keys() if name in unlogged]: del defaults[name] try_mlflow_log(mlflow.log_params, defaults) # Logging the arguments passed by the user args_dict = dict((param_name, param_val) for param_name, param_val in zip(all_param_names, args) if param_name not in unlogged) if args_dict: try_mlflow_log(mlflow.log_params, args_dict) # Logging the kwargs passed by the user for param_name in kwargs: if param_name not in unlogged: try_mlflow_log(mlflow.log_param, param_name, kwargs[param_name])
Example #8
Source File: test_tracking.py From mlflow with Apache License 2.0 | 5 votes |
def test_log_params(): expected_params = {"name_1": "c", "name_2": "b", "nested/nested/name": 5} with start_run() as active_run: run_id = active_run.info.run_id mlflow.log_params(expected_params) finished_run = tracking.MlflowClient().get_run(run_id) # Validate params assert finished_run.data.params == {"name_1": "c", "name_2": "b", "nested/nested/name": "5"}
Example #9
Source File: keras_mlflow.py From optuna with MIT License | 5 votes |
def mlflow_callback(study, trial): trial_value = trial.value if trial.value is not None else float("nan") with mlflow.start_run(run_name=study.study_name): mlflow.log_params(trial.params) mlflow.log_metrics({"mean_squared_error": trial_value})
Example #10
Source File: mlflow.py From optuna with MIT License | 5 votes |
def __call__(self, study: optuna.study.Study, trial: optuna.trial.FrozenTrial) -> None: # This sets the tracking_uri for MLflow. if self._tracking_uri is not None: mlflow.set_tracking_uri(self._tracking_uri) # This sets the experiment of MLflow. mlflow.set_experiment(study.study_name) with mlflow.start_run(run_name=str(trial.number)): # This sets the metric for MLflow. trial_value = trial.value if trial.value is not None else float("nan") mlflow.log_metric(self._metric_name, trial_value) # This sets the params for MLflow. mlflow.log_params(trial.params) # This sets the tags for MLflow. tags = {} # type: Dict[str, str] tags["number"] = str(trial.number) tags["datetime_start"] = str(trial.datetime_start) tags["datetime_complete"] = str(trial.datetime_complete) # Set state and convert it to str and remove the common prefix. trial_state = trial.state if isinstance(trial_state, TrialState): tags["state"] = str(trial_state).split(".")[-1] # Set direction and convert it to str and remove the common prefix. study_direction = study.direction if isinstance(study_direction, StudyDirection): tags["direction"] = str(study_direction).split(".")[-1] tags.update(trial.user_attrs) distributions = { (k + "_distribution"): str(v) for (k, v) in trial.distributions.items() } tags.update(distributions) mlflow.set_tags(tags)
Example #11
Source File: exp_tracking.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _plx_log_params(params_dict): from polyaxon_client.tracking import Experiment plx_exp = Experiment() plx_exp.log_params( **{"pytorch version": torch.__version__, "ignite version": ignite.__version__,} ) plx_exp.log_params(**params_dict)
Example #12
Source File: exp_tracking.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _mlflow_log_params(params_dict): mlflow.log_params( {"pytorch version": torch.__version__, "ignite version": ignite.__version__,} ) mlflow.log_params(params_dict)
Example #13
Source File: exp_tracking.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _plx_log_params(params_dict): from polyaxon_client.tracking import Experiment plx_exp = Experiment() plx_exp.log_params( **{"pytorch version": torch.__version__, "ignite version": ignite.__version__,} ) plx_exp.log_params(**params_dict)
Example #14
Source File: exp_tracking.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _mlflow_log_params(params_dict): mlflow.log_params( {"pytorch version": torch.__version__, "ignite version": ignite.__version__,} ) mlflow.log_params(params_dict)