Python mlflow.get_artifact_uri() Examples
The following are 13
code examples of mlflow.get_artifact_uri().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
mlflow
, or try the search function
.
Example #1
Source File: test_artifact_utils.py From mlflow with Apache License 2.0 | 6 votes |
def test_artifact_can_be_downloaded_from_absolute_uri_successfully(tmpdir): artifact_file_name = "artifact.txt" artifact_text = "Sample artifact text" local_artifact_path = tmpdir.join(artifact_file_name).strpath with open(local_artifact_path, "w") as out: out.write(artifact_text) logged_artifact_path = "artifact" with mlflow.start_run(): mlflow.log_artifact(local_path=local_artifact_path, artifact_path=logged_artifact_path) artifact_uri = mlflow.get_artifact_uri(artifact_path=logged_artifact_path) downloaded_artifact_path = os.path.join( _download_artifact_from_uri(artifact_uri), artifact_file_name) assert downloaded_artifact_path != local_artifact_path assert downloaded_artifact_path != logged_artifact_path with open(downloaded_artifact_path, "r") as f: assert f.read() == artifact_text
Example #2
Source File: test_artifact_utils.py From mlflow with Apache License 2.0 | 6 votes |
def test_download_artifact_from_absolute_uri_persists_data_to_specified_output_directory(tmpdir): artifact_file_name = "artifact.txt" artifact_text = "Sample artifact text" local_artifact_path = tmpdir.join(artifact_file_name).strpath with open(local_artifact_path, "w") as out: out.write(artifact_text) logged_artifact_subdir = "logged_artifact" with mlflow.start_run(): mlflow.log_artifact(local_path=local_artifact_path, artifact_path=logged_artifact_subdir) artifact_uri = mlflow.get_artifact_uri(artifact_path=logged_artifact_subdir) artifact_output_path = tmpdir.join("artifact_output").strpath os.makedirs(artifact_output_path) _download_artifact_from_uri(artifact_uri=artifact_uri, output_path=artifact_output_path) assert logged_artifact_subdir in os.listdir(artifact_output_path) assert artifact_file_name in os.listdir( os.path.join(artifact_output_path, logged_artifact_subdir)) with open(os.path.join( artifact_output_path, logged_artifact_subdir, artifact_file_name), "r") as f: assert f.read() == artifact_text
Example #3
Source File: mlflow_utils.py From nucleus7 with Mozilla Public License 2.0 | 5 votes |
def log_saved_model(saved_model_path: Union[bytes, str], global_step: int, saved_model_load_fn: Callable): """ Log all the saved models to mlflow Parameters ---------- saved_model_path path to saved model global_step global step for saved model """ # pylint: disable=unused-argument # saved_model_load_fn is coming from patch if mlflow.active_run() is None: _warn_about_no_run() return if isinstance(saved_model_path, bytes): saved_model_path = saved_model_path.decode() saved_model_tag = os.path.split(saved_model_path)[-1] artifact_path = os.path.join("models", saved_model_tag) mlflow_tf.log_model( tf_saved_model_dir=saved_model_path, tf_meta_graph_tags=[tag_constants.SERVING], tf_signature_def_key= signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, artifact_path=artifact_path) mlflow_artifacts_path = mlflow.get_artifact_uri() saved_model_artifact_path = os.path.join( mlflow_artifacts_path, artifact_path) project_utils.log_exported_model_info( saved_model_artifact_path, global_step)
Example #4
Source File: loggers.py From OpenKiwi with GNU Affero General Public License v3.0 | 5 votes |
def get_artifact_uri(): return None
Example #5
Source File: loggers.py From OpenKiwi with GNU Affero General Public License v3.0 | 5 votes |
def get_artifact_uri(): return mlflow.get_artifact_uri()
Example #6
Source File: test_tracking.py From mlflow with Apache License 2.0 | 5 votes |
def test_log_artifact_with_dirs(tmpdir): # Test log artifact with a directory art_dir = tmpdir.mkdir("parent") file0 = art_dir.join("file0") file0.write("something") file1 = art_dir.join("file1") file1.write("something") sub_dir = art_dir.mkdir("child") with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(str(art_dir)) base = os.path.basename(str(art_dir)) assert os.listdir(run_artifact_dir) == [base] assert set(os.listdir(os.path.join(run_artifact_dir, base))) == \ {'child', 'file0', 'file1'} with open(os.path.join(run_artifact_dir, base, "file0")) as f: assert f.read() == "something" # Test log artifact with directory and specified parent folder art_dir = tmpdir.mkdir("dir") with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(str(art_dir), "some_parent") assert os.listdir(run_artifact_dir) == [os.path.basename("some_parent")] assert os.listdir(os.path.join(run_artifact_dir, "some_parent")) == \ [os.path.basename(str(art_dir))] sub_dir = art_dir.mkdir("another_dir") with start_run(): artifact_uri = mlflow.get_artifact_uri() run_artifact_dir = local_file_uri_to_path(artifact_uri) mlflow.log_artifact(str(art_dir), "parent/and_child") assert os.listdir(os.path.join(run_artifact_dir, "parent", "and_child")) == \ [os.path.basename(str(art_dir))] assert os.listdir(os.path.join(run_artifact_dir, "parent", "and_child", os.path.basename(str(art_dir)))) == \ [os.path.basename(str(sub_dir))]
Example #7
Source File: test_tracking.py From mlflow with Apache License 2.0 | 5 votes |
def test_get_artifact_uri_with_artifact_path_unspecified_returns_artifact_root_dir(): with mlflow.start_run() as active_run: assert mlflow.get_artifact_uri(artifact_path=None) == active_run.info.artifact_uri
Example #8
Source File: test_tracking.py From mlflow with Apache License 2.0 | 5 votes |
def test_get_artifact_uri_uses_currently_active_run_id(): artifact_path = "artifact" with mlflow.start_run() as active_run: assert mlflow.get_artifact_uri(artifact_path=artifact_path) == \ tracking.artifact_utils.get_artifact_uri( run_id=active_run.info.run_id, artifact_path=artifact_path)
Example #9
Source File: test_tracking.py From mlflow with Apache License 2.0 | 5 votes |
def test_get_artifact_uri_appends_to_uri_path_component_correctly( artifact_location, expected_uri_format): client = MlflowClient() client.create_experiment("get-artifact-uri-test", artifact_location=artifact_location) mlflow.set_experiment("get-artifact-uri-test") with mlflow.start_run(): run_id = mlflow.active_run().info.run_id for artifact_path in ["path/to/artifact", "/artifact/path", "arty.txt"]: artifact_uri = mlflow.get_artifact_uri(artifact_path) assert artifact_uri == tracking.artifact_utils.get_artifact_uri(run_id, artifact_path) assert artifact_uri == expected_uri_format.format( run_id=run_id, path=artifact_path.lstrip("/"))
Example #10
Source File: exp_tracking.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _mlflow_get_output_path(): return mlflow.get_artifact_uri()
Example #11
Source File: exp_tracking.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _mlflow_get_output_path(): return mlflow.get_artifact_uri()
Example #12
Source File: model.py From mlflow with Apache License 2.0 | 4 votes |
def log(cls, artifact_path, flavor, registered_model_name=None, **kwargs): """ Log model using supplied flavor module. If no run is active, this method will create a new active run. :param artifact_path: Run relative path identifying the model. :param flavor: Flavor module to save the model with. The module must have the ``save_model`` function that will persist the model as a valid MLflow model. :param registered_model_name: (Experimental) If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param signature: (Experimental) :py:class:`ModelSignature` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <infer_signature>` from datasets representing valid model input (e.g. the training dataset) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") signature = infer_signature(train, model.predict(train)) :param input_example: (Experimental) Input example provides one or several examples of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param kwargs: Extra args passed to the model flavor. """ with TempDir() as tmp: local_path = tmp.path("model") run_id = mlflow.tracking.fluent._get_or_start_run().info.run_id mlflow_model = cls(artifact_path=artifact_path, run_id=run_id) flavor.save_model(path=local_path, mlflow_model=mlflow_model, **kwargs) mlflow.tracking.fluent.log_artifacts(local_path, artifact_path) try: mlflow.tracking.fluent._record_logged_model(mlflow_model) except MlflowException: # We need to swallow all mlflow exceptions to maintain backwards compatibility with # older tracking servers. Only print out a warning for now. _logger.warning( "Logging model metadata to the tracking server has failed, possibly due older " "server version. The model artifacts have been logged successfully under %s. " "In addition to exporting model artifacts, MLflow clients 1.7.0 and above " "attempt to record model metadata to the tracking store. If logging to a " "mlflow server via REST, consider upgrading the server version to MLflow " "1.7.0 or above.", mlflow.get_artifact_uri()) if registered_model_name is not None: run_id = mlflow.tracking.fluent.active_run().info.run_id mlflow.register_model("runs:/%s/%s" % (run_id, artifact_path), registered_model_name)
Example #13
Source File: train_predict.py From mlflow with Apache License 2.0 | 4 votes |
def main(argv): with mlflow.start_run(): args = parser.parse_args(argv[1:]) # Builds, trains and evaluates a tf.estimator. Then, exports it for inference, # logs the exported model with MLflow, and loads the fitted model back as a PyFunc. (x_train, y_train), (x_test, y_test) = tf.keras.datasets.boston_housing.load_data() # There are 13 features we are using for inference. feat_cols = [tf.feature_column.numeric_column(key="features", shape=(x_train.shape[1],))] feat_spec = { "features": tf.placeholder("float", name="features", shape=[None, x_train.shape[1]])} hidden_units = [50, 20] steps = args.steps regressor = tf.estimator.DNNRegressor(hidden_units=hidden_units, feature_columns=feat_cols) train_input_fn = tf.estimator.inputs.numpy_input_fn({"features": x_train}, y_train, num_epochs=None, shuffle=True) regressor.train(train_input_fn, steps=steps) test_input_fn = tf.estimator.inputs.numpy_input_fn({"features": x_test}, y_test, num_epochs=None, shuffle=True) # Compute mean squared error mse = regressor.evaluate(test_input_fn, steps=steps) # Building a receiver function for exporting receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feat_spec) temp = tempfile.mkdtemp() try: # The model is automatically logged when export_saved_model() is called. saved_estimator_path = regressor.export_savedmodel(temp, receiver_fn).decode("utf-8") # Since the model was automatically logged as an artifact (more specifically # a MLflow Model), we don't need to use saved_estimator_path to load back the model. # MLflow takes care of it! pyfunc_model = pyfunc.load_model(mlflow.get_artifact_uri('model')) df = pd.DataFrame(data=x_test, columns=["features"] * x_train.shape[1]) # Checking the PyFunc's predictions are the same as the original model's predictions. predict_df = pyfunc_model.predict(df) predict_df['original_labels'] = y_test print(predict_df) finally: shutil.rmtree(temp)