Python models.base_model.BaseModel() Examples
The following are 6
code examples of models.base_model.BaseModel().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
models.base_model
, or try the search function
.
Example #1
Source File: __init__.py From densebody_pytorch with GNU General Public License v3.0 | 6 votes |
def find_model_using_name(model_name): # Given the option --model [modelname], # the file "models/modelname_model.py" # will be imported. model_filename = "models." + model_name + "_model" modellib = importlib.import_module(model_filename) # In the file, the class called ModelNameModel() will # be instantiated. It has to be a subclass of BaseModel, # and it is case-insensitive. model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model
Example #2
Source File: __init__.py From colorization-pytorch with MIT License | 6 votes |
def find_model_using_name(model_name): # Given the option --model [modelname], # the file "models/modelname_model.py" # will be imported. model_filename = "models." + model_name + "_model" modellib = importlib.import_module(model_filename) # In the file, the class called ModelNameModel() will # be instantiated. It has to be a subclass of BaseModel, # and it is case-insensitive. model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model
Example #3
Source File: __init__.py From angularGAN with MIT License | 6 votes |
def find_model_using_name(model_name): # Given the option --model [modelname], # the file "models/modelname_model.py" # will be imported. model_filename = "models." + model_name + "_model" modellib = importlib.import_module(model_filename) # In the file, the class called ModelNameModel() will # be instantiated. It has to be a subclass of BaseModel, # and it is case-insensitive. model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model
Example #4
Source File: __init__.py From DMIT with MIT License | 5 votes |
def create_model(opt): model_filename = "models." + opt.model_name + '_model' modellib = importlib.import_module(model_filename) model = None target_model_name = opt.model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: raise NotImplementedError("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) return model(opt)
Example #5
Source File: adaptation_model.py From CAG_UDA with MIT License | 5 votes |
def eval(self, net=None, logger=None): """Make specific models eval mode during test time""" # if issubclass(net, nn.Module) or issubclass(net, BaseModel): if net == None: for net in self.nets: net.eval() for net in self.nets_DP: net.eval() if logger!=None: logger.info("Successfully set the model eval mode") else: net.eval() if logger!=None: logger("Successfully set {} eval mode".format(net.__class__.__name__)) return
Example #6
Source File: adaptation_model.py From CAG_UDA with MIT License | 5 votes |
def set_requires_grad(self, logger, net, requires_grad = False): """Set requires_grad=Fasle for all the networks to avoid unnecessary computations Parameters: net (BaseModel) -- the network which will be operated on requires_grad (bool) -- whether the networks require gradients or not """ # if issubclass(net, nn.Module) or issubclass(net, BaseModel): for parameter in net.parameters(): parameter.requires_grad = requires_grad # print("Successfully set {} requires_grad with {}".format(net.__class__.__name__, requires_grad)) # return