Python tensorflow.core.example.feature_pb2.Feature() Examples
The following are 30
code examples of tensorflow.core.example.feature_pb2.Feature().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.core.example.feature_pb2
, or try the search function
.
Example #1
Source File: dataset_test.py From spotify-tensorflow with Apache License 2.0 | 6 votes |
def _write_test_data(): schema = feature_spec_to_schema({"f0": tf.VarLenFeature(dtype=tf.int64), "f1": tf.VarLenFeature(dtype=tf.int64), "f2": tf.VarLenFeature(dtype=tf.int64)}) batches = [ [1, 4, None], [2, None, None], [3, 5, None], [None, None, None], ] example_proto = [example_pb2.Example(features=feature_pb2.Features(feature={ "f" + str(i): feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[f])) for i, f in enumerate(batch) if f is not None })) for batch in batches] return DataUtil.write_test_data(example_proto, schema)
Example #2
Source File: input_reader_builder_test.py From aster with MIT License | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/transcript': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[ 'hello'.encode('utf-8')])) })) writer.write(example.SerializeToString()) writer.close() return path
Example #3
Source File: tf_example_decoder_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _Int64FeatureFromList(self, ndarray): return feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=ndarray.flatten().tolist()))
Example #4
Source File: input_reader_builder_test.py From moveo_ros with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #5
Source File: tf_example_decoder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def _BytesFeatureFromList(self, ndarray): values = ndarray.flatten().tolist() return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=values))
Example #6
Source File: tf_example_decoder_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _BytesFeatureFromList(self, ndarray): values = ndarray.flatten().tolist() for i in range(len(values)): values[i] = values[i].encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=values))
Example #7
Source File: tf_example_decoder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def _BytesFeature(self, value): if isinstance(value, list): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
Example #8
Source File: tf_example_decoder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def _FloatFeature(self, value): return tf.train.Feature(float_list=tf.train.FloatList(value=value))
Example #9
Source File: input_reader_builder_test.py From object_detector_app with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #10
Source File: tf_example_decoder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def _Int64FeatureFromList(self, ndarray): return feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=ndarray.flatten().tolist()))
Example #11
Source File: input_reader_builder_test.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #12
Source File: input_reader_builder_test.py From MBMD with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #13
Source File: input_reader_builder_test.py From Elphas with Apache License 2.0 | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/height': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[4])), 'image/width': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[5])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), 'image/object/mask': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=flat_mask)), })) writer.write(example.SerializeToString()) writer.close() return path
Example #14
Source File: input_reader_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/height': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[4])), 'image/width': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[5])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), 'image/object/mask': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=flat_mask)), })) writer.write(example.SerializeToString()) writer.close() return path
Example #15
Source File: input_reader_builder_test.py From object_detection_with_tensorflow with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/height': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[4])), 'image/width': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[5])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), 'image/object/mask': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=flat_mask)), })) writer.write(example.SerializeToString()) writer.close() return path
Example #16
Source File: input_reader_builder_test.py From AniSeg with Apache License 2.0 | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/height': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[4])), 'image/width': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[5])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), 'image/object/mask': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=flat_mask)), })) writer.write(example.SerializeToString()) writer.close() return path
Example #17
Source File: input_reader_builder_test.py From hands-detection with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #18
Source File: tf_example_decoder_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def _Int64Feature(self, value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
Example #19
Source File: tf_example_decoder_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _BytesFeature(self, value): if isinstance(value, list): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
Example #20
Source File: tf_example_decoder_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _FloatFeature(self, value): return tf.train.Feature(float_list=tf.train.FloatList(value=value))
Example #21
Source File: tf_example_decoder_test.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _Int64Feature(self, value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
Example #22
Source File: tf_example_decoder_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _BytesFeatureFromList(self, ndarray): values = ndarray.flatten().tolist() for i in range(len(values)): values[i] = values[i].encode('utf-8') return feature_pb2.Feature(bytes_list=feature_pb2.BytesList(value=values))
Example #23
Source File: tf_example_decoder_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _Int64FeatureFromList(self, ndarray): return feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=ndarray.flatten().tolist()))
Example #24
Source File: tf_example_decoder_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _BytesFeature(self, value): if isinstance(value, list): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
Example #25
Source File: tf_example_decoder_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _FloatFeature(self, value): return tf.train.Feature(float_list=tf.train.FloatList(value=value))
Example #26
Source File: tf_example_decoder_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _Int64Feature(self, value): return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
Example #27
Source File: input_reader_builder_test.py From tensorflow with BSD 2-Clause "Simplified" License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #28
Source File: input_reader_builder_test.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), })) writer.write(example.SerializeToString()) writer.close() return path
Example #29
Source File: input_reader_builder_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/height': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[4])), 'image/width': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[5])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), 'image/object/mask': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=flat_mask)), })) writer.write(example.SerializeToString()) writer.close() return path
Example #30
Source File: input_reader_builder_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = example_pb2.Example(features=feature_pb2.Features(feature={ 'image/encoded': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=[encoded_jpeg])), 'image/format': feature_pb2.Feature( bytes_list=feature_pb2.BytesList(value=['jpeg'.encode('utf-8')])), 'image/height': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[4])), 'image/width': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[5])), 'image/object/bbox/xmin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/xmax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/bbox/ymin': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[0.0])), 'image/object/bbox/ymax': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=[1.0])), 'image/object/class/label': feature_pb2.Feature( int64_list=feature_pb2.Int64List(value=[2])), 'image/object/mask': feature_pb2.Feature( float_list=feature_pb2.FloatList(value=flat_mask)), })) writer.write(example.SerializeToString()) writer.close() return path