Python opts.model_opts() Examples
The following are 7
code examples of opts.model_opts().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
opts
, or try the search function
.
Example #1
Source File: extract_embeddings.py From DC-NeuralConversation with MIT License | 5 votes |
def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] opt = parser.parse_args() opt.cuda = opt.gpu > -1 if opt.cuda: torch.cuda.set_device(opt.gpu) # Add in default model arguments, possibly added since training. checkpoint = torch.load(opt.model, map_location=lambda storage, loc: storage) model_opt = checkpoint['opt'] src_dict = checkpoint['vocab'][1][1] tgt_dict = checkpoint['vocab'][0][1] fields = onmt.io.load_fields_from_vocab(checkpoint['vocab']) model_opt = checkpoint['opt'] for arg in dummy_opt.__dict__: if arg not in model_opt: model_opt.__dict__[arg] = dummy_opt.__dict__[arg] model = onmt.ModelConstructor.make_base_model( model_opt, fields, use_gpu(opt), checkpoint) encoder = model.encoder decoder = model.decoder encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist() decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist() print("Writing source embeddings") write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict, encoder_embeddings) print("Writing target embeddings") write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict, decoder_embeddings) print('... done.') print('Converting model...')
Example #2
Source File: extract_embeddings.py From graph-2-text with MIT License | 5 votes |
def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] opt = parser.parse_args() opt.cuda = opt.gpu > -1 if opt.cuda: torch.cuda.set_device(opt.gpu) # Add in default model arguments, possibly added since training. checkpoint = torch.load(opt.model, map_location=lambda storage, loc: storage) model_opt = checkpoint['opt'] src_dict = checkpoint['vocab'][1][1] tgt_dict = checkpoint['vocab'][0][1] fields = onmt.io.load_fields_from_vocab(checkpoint['vocab']) model_opt = checkpoint['opt'] for arg in dummy_opt.__dict__: if arg not in model_opt: model_opt.__dict__[arg] = dummy_opt.__dict__[arg] model = onmt.ModelConstructor.make_base_model( model_opt, fields, use_gpu(opt), checkpoint) encoder = model.encoder decoder = model.decoder encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist() decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist() print("Writing source embeddings") write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict, encoder_embeddings) print("Writing target embeddings") write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict, decoder_embeddings) print('... done.') print('Converting model...')
Example #3
Source File: evaluate_question.py From nl2sql with MIT License | 4 votes |
def main(anno_file_name, col_headers, raw_args=None): parser = argparse.ArgumentParser(description='evaluate.py') opts.translate_opts(parser) opt = parser.parse_args(raw_args) torch.cuda.set_device(opt.gpu) opt.db_file = os.path.join(opt.data_path, '{}.db'.format(opt.split)) opt.pre_word_vecs = os.path.join(opt.data_path, 'embedding') dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) opts.train_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] opt.anno = anno_file_name engine = DBEngine(opt.db_file) js_list = table.IO.read_anno_json(opt.anno) prev_best = (None, None) sql_query = [] for fn_model in glob.glob(opt.model_path): opt.model = fn_model translator = Translator(opt, dummy_opt.__dict__) data = table.IO.TableDataset(js_list, translator.fields, None, False) test_data = table.IO.OrderedIterator( dataset=data, device=opt.gpu, batch_size=opt.batch_size, train=False, sort=True, sort_within_batch=False) # inference r_list = [] for batch in test_data: r_list += translator.translate(batch) r_list.sort(key=lambda x: x.idx) pred = r_list[-1] sql_pred = {'agg':pred.agg, 'sel':pred.sel, 'conds': pred.recover_cond_to_gloss(js_list[-1])} sql_query = Query(sql_pred['sel'], sql_pred['agg'], sql_pred['conds']) try: ans_pred = engine.execute_query( js_list[-1]['table_id'], Query.from_dict(sql_pred), lower=True) except Exception as e: ans_pred = None return sql_query.get_complete_query(col_headers), ans_pred
Example #4
Source File: evaluate.py From nl2sql with MIT License | 4 votes |
def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) opts.train_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] engine = DBEngine(opt.db_file) with codecs.open(opt.source_file, "r", "utf-8") as corpus_file: sql_list = [json.loads(line)['sql'] for line in corpus_file] js_list = table.IO.read_anno_json(opt.anno) prev_best = (None, None) for fn_model in glob.glob(opt.model_path): opt.model = fn_model translator = Translator(opt, dummy_opt.__dict__) data = table.IO.TableDataset(js_list, translator.fields, None, False) test_data = table.IO.OrderedIterator( dataset=data, device=opt.gpu, batch_size=opt.batch_size, train=False, sort=True, sort_within_batch=False) # inference if opt.beam_search: print('Using execution guidance for inference.') r_list = [] for batch in test_data: r_list += translator.translate(batch, js_list, sql_list) r_list.sort(key=lambda x: x.idx) assert len(r_list) == len(js_list), 'len(r_list) != len(js_list): {} != {}'.format( len(r_list), len(js_list)) # evaluation for pred, gold, sql_gold in zip(r_list, js_list, sql_list): pred.eval(gold, sql_gold, engine) print('Results:') for metric_name in ('all', 'exe'): c_correct = sum((x.correct[metric_name] for x in r_list)) print('{}: {} / {} = {:.2%}'.format(metric_name, c_correct, len(r_list), c_correct / len(r_list))) if metric_name == 'all' and (prev_best[0] is None or c_correct > prev_best[1]): prev_best = (fn_model, c_correct) if (opt.split == 'dev') and (prev_best[0] is not None): with codecs.open(os.path.join(opt.data_path, 'dev_best.txt'), 'w', encoding='utf-8') as f_out: f_out.write('{}\n'.format(prev_best[0]))
Example #5
Source File: evaluate.py From coarse2fine with MIT License | 4 votes |
def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) opts.train_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] js_list = table.IO.read_anno_json(opt.anno, opt) metric_name_list = ['tgt'] prev_best = (None, None) for fn_model in glob.glob(opt.model_path): opt.model = fn_model print(fn_model) print(opt.anno) translator = table.Translator(opt, dummy_opt.__dict__) data = table.IO.TableDataset( js_list, translator.fields, 0, None, False) test_data = table.IO.OrderedIterator( dataset=data, device=opt.gpu, batch_size=opt.batch_size, train=False, sort=True, sort_within_batch=False) # inference r_list = [] for batch in test_data: r = translator.translate(batch) r_list += r r_list.sort(key=lambda x: x.idx) assert len(r_list) == len(js_list), 'len(r_list) != len(js_list): {} != {}'.format( len(r_list), len(js_list)) # evaluation for pred, gold in zip(r_list, js_list): pred.eval(gold) print('Results:') for metric_name in metric_name_list: c_correct = sum((x.correct[metric_name] for x in r_list)) acc = c_correct / len(r_list) print('{}: {} / {} = {:.2%}'.format(metric_name, c_correct, len(r_list), acc)) if metric_name == 'tgt' and (prev_best[0] is None or acc > prev_best[1]): prev_best = (fn_model, acc) if (opt.split == 'dev') and (prev_best[0] is not None): with codecs.open(os.path.join(opt.root_dir, opt.dataset, 'dev_best.txt'), 'w', encoding='utf-8') as f_out: f_out.write('{}\n'.format(prev_best[0]))
Example #6
Source File: evaluate.py From coarse2fine with MIT License | 4 votes |
def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) opts.train_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] engine = DBEngine(opt.db_file) with codecs.open(opt.source_file, "r", "utf-8") as corpus_file: sql_list = [json.loads(line)['sql'] for line in corpus_file] js_list = table.IO.read_anno_json(opt.anno) prev_best = (None, None) for fn_model in glob.glob(opt.model_path): print(fn_model) print(opt.anno) opt.model = fn_model translator = table.Translator(opt, dummy_opt.__dict__) data = table.IO.TableDataset(js_list, translator.fields, None, False) test_data = table.IO.OrderedIterator( dataset=data, device=opt.gpu, batch_size=opt.batch_size, train=False, sort=True, sort_within_batch=False) # inference r_list = [] for batch in test_data: r_list += translator.translate(batch) r_list.sort(key=lambda x: x.idx) assert len(r_list) == len(js_list), 'len(r_list) != len(js_list): {} != {}'.format( len(r_list), len(js_list)) # evaluation for pred, gold, sql_gold in zip(r_list, js_list, sql_list): pred.eval(gold, sql_gold, engine) print('Results:') for metric_name in ('all', 'exe'): c_correct = sum((x.correct[metric_name] for x in r_list)) print('{}: {} / {} = {:.2%}'.format(metric_name, c_correct, len(r_list), c_correct / len(r_list))) if metric_name == 'all' and (prev_best[0] is None or c_correct > prev_best[1]): prev_best = (fn_model, c_correct) if (opt.split == 'dev') and (prev_best[0] is not None): with codecs.open(os.path.join(opt.data_path, 'dev_best.txt'), 'w', encoding='utf-8') as f_out: f_out.write('{}\n'.format(prev_best[0]))
Example #7
Source File: evaluate.py From coarse2fine with MIT License | 4 votes |
def main(): dummy_parser = argparse.ArgumentParser(description='train.py') opts.model_opts(dummy_parser) opts.train_opts(dummy_parser) dummy_opt = dummy_parser.parse_known_args([])[0] js_list = table.IO.read_anno_json(opt.anno, opt) bpe_processor = torch.load(opt.bpe_path) metric_name_list = ['tgt'] prev_best = (None, None) for fn_model in glob.glob(opt.model_path): opt.model = fn_model print(fn_model) print(opt.anno) translator = table.Translator(opt, dummy_opt.__dict__) data = table.IO.TableDataset( js_list, translator.fields, bpe_processor, 0, None, False) test_data = table.IO.OrderedIterator( dataset=data, device=opt.gpu, batch_size=opt.batch_size, train=False, sort=True, sort_within_batch=False) # inference r_list = [] for batch in test_data: r = translator.translate(batch) r_list += r r_list.sort(key=lambda x: x.idx) assert len(r_list) == len(js_list), 'len(r_list) != len(js_list): {} != {}'.format( len(r_list), len(js_list)) # evaluation for pred, gold in zip(r_list, js_list): pred.eval(gold) print('Results:') for metric_name in metric_name_list: c_correct = sum((x.correct[metric_name] for x in r_list)) acc = c_correct / len(r_list) print('{}: {} / {} = {:.2%}'.format(metric_name, c_correct, len(r_list), acc)) if metric_name == 'tgt' and (prev_best[0] is None or acc > prev_best[1]): prev_best = (fn_model, acc) if (opt.split == 'dev') and (prev_best[0] is not None): with codecs.open(os.path.join(opt.root_dir, opt.dataset, 'dev_best.txt'), 'w', encoding='utf-8') as f_out: f_out.write('{}\n'.format(prev_best[0]))