Python utility.timer() Examples

The following are 30 code examples of utility.timer(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module utility , or try the search function .
Example #1
Source File: trainer.py    From NAS_public with GNU General Public License v3.0 6 votes vote down vote up
def __init__(self, opt, model, dataset):
        self.opt = opt
        self.model = model
        self.dataset = dataset
        self.device = torch.device("cuda" if opt.use_cuda else "cpu")
        self.timer = util.timer()
        self.epoch = 0

        #build optimizer
        self.optimizer_dict = {}
        for scale, _ in model.scale_dict.items():
            self.optimizer_dict[scale] = optim.Adam(model.networks[model.scale_dict[scale]].parameters(), lr=opt.lr, weight_decay=opt.weight_decay)
        self.loss_func = self._get_loss_func(opt.loss_type)

        #load a model on a target device
        self.model = self.model.to(self.device) 
Example #2
Source File: trainer.py    From NAS_public with GNU General Public License v3.0 5 votes vote down vote up
def train_one_epoch(self):
        self.timer.tic()

        #decay learning rate
        self._adjust_learning_rate(self.epoch)

        #iterate over low-resolutions
        self.model.train()
        self.dataset.setDatasetType('train')
        train_dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=self.opt.num_batch, pin_memory=True, shuffle=True)

        for lr in self.opt.dash_lr:
            self.dataset.setTargetLR(lr)
            scale = self.dataset.getTargetScale()
            self.model.setTargetScale(scale)

            #iterate over training image patches
            for iteration, batch in enumerate(train_dataloader, 1):
                input, target = batch[0], batch[1]
                input, target =  input.to(self.device), target.to(self.device)
                
                self.optimizer_dict[scale].zero_grad()
                loss = self.loss_func(self.model(input), target)
                
                loss.backward()
                self.optimizer_dict[scale].step()

                if iteration % 10 == 0:
                    util.print_progress(iteration, len(self.dataset)/self.opt.num_batch, 'Train Progress ({}p):'.format(lr), 'Complete', 1, 50)

        self.epoch += 1
        print('Epoch[{}-train](complete): {}sec'.format(self.epoch, self.timer.toc())) 
Example #3
Source File: trainer.py    From AWSRN with MIT License 4 votes vote down vote up
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_psnr = 0
                # eval_ssim = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare(lr, hr)
                    else:
                        lr, = self.prepare(lr)

                    sr = self.model(lr, idx_scale)

                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_psnr += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        # eval_ssim += utility.calc_ssim(sr, hr)
                        # save_list.extend([lr, hr])
                        save_list.extend([hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_psnr / len(self.loader_test)
                # mean_ssim = eval_ssim / len(self.loader_test)
                
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best PSNR: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
Example #4
Source File: trainer_finetune.py    From 3D_Appearance_SR with MIT License 4 votes vote down vote up
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, nl, mk, hr, filename, _) in enumerate(tqdm_test):
                    # print('FLAG')
                    # print(filename)
                    filename = filename[0]
                    print(filename)
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, nl, mk, hr = self.prepare([lr, nl, mk, hr])
                    else:
                        lr, nl, mk, = self.prepare([lr, nl, mk])

                    sr = self.model(idx_scale, lr, nl, mk)
                    sr = utility.quantize(sr, self.args.rgb_range)
                    # print(sr.shape)
                    b, c, h, w = sr.shape
                    hr = hr[:, :, :h, :w]
                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
Example #5
Source File: trainer.py    From 3D_Appearance_SR with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()
        # from IPython import embed; embed(); exit()
        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare([lr, hr])
            timer_data.hold()
            timer_model.tic()
            # from IPython import embed; embed(); exit()

            self.optimizer.zero_grad()
            sr = self.model(idx_scale, lr)
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.3f}+{:.3f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #6
Source File: trainer.py    From 3D_Appearance_SR with MIT License 4 votes vote down vote up
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):

                    # from IPython import embed; embed();
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare([lr, hr])
                    else:
                        lr = self.prepare([lr])[0]

                    sr = self.model(idx_scale, lr)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
Example #7
Source File: tester.py    From NAS_public with GNU General Public License v3.0 4 votes vote down vote up
def _analyze_baseline(self):
        timer = util.timer()
        dataloader = DataLoader(dataset=self.dataset, num_workers=self.opt.num_thread, batch_size=1, shuffle=False, pin_memory=True)
        result = {}

        #iterate over low resolutions
        for lr in opt.dash_lr:
            #setup (process & thread)
            process_list = []
            output_queue = mp.Queue()
            input_queue = mp.Queue(1)
            for _ in range(PROCESS_NUM):
                process = mp.Process(target=measure_quality, args=(input_queue, output_queue))
                process.start()
                process_list.append(process)

            #setup (variable)
            result[lr] = Result()
            result[lr].frameidx = []
            result[lr].ssim = []
            result[lr].psnr = []

            print('start anaylze {}p/baseline quality'.format(lr))
            self.dataset.setTargetLR(lr)
            self.model.setTargetScale(self.dataset.getTargetScale())

            #iterate over test dataset
            for iteration, batch in enumerate(dataloader, 1):
                assert len(batch[0]) == 1
                _, upscaled, target = batch[0], batch[1], batch[2]
                upscaled_np, target_np = torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
                upscaled_np= upscaled.data[0].permute(1,2,0).numpy()
                input_queue.put((iteration, upscaled_np, target_np))

                elapsed_time = timer.toc()
                util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)


            #terminate
            for _ in range(len(process_list)):
                input_queue.put(('end', ))

            #merge results
            quality_list = []
            for process in process_list:
                quality_list.extend(output_queue.get())

            for quality in quality_list:
                result[lr].frameidx.append(quality.idx)
                result[lr].ssim.append(quality.ssim)
                result[lr].psnr.append(quality.psnr)

            result[lr].frameidx, result[lr].ssim, result[lr].psnr = \
                [list(x) for x in zip(*sorted(zip(result[lr].frameidx, result[lr].ssim, result[lr].psnr), key=lambda pair: pair[0]))]

        #PSNR, SSIM for original images
        result[self.opt.dash_hr] = Result()
        result[self.opt.dash_hr].psnr = 100
        result[self.opt.dash_hr].ssim = 1

        return result 
Example #8
Source File: tester.py    From NAS_public with GNU General Public License v3.0 4 votes vote down vote up
def _generate_sr(self, output_node=None):
        with torch.no_grad():
            timer = util.timer()
            if output_node == None :
                output_node = self.output_nodes[-1]

            dataloader = DataLoader(dataset=self.dataset, num_workers=6, batch_size=1, shuffle=False, pin_memory=True)
            target_res = self.node2res[output_node]
            
            process_list = []
            input_queue = mp.Queue()
            for _ in range(PROCESS_NUM):
                process = mp.Process(target=save_img, args=(input_queue, ))
                process.start()
                process_list.append(process)

            #iterate over target resolutions
            for lr in target_res:

                self.dataset.setTargetLR(lr)
                self.model.setTargetScale(self.dataset.getTargetScale())
                for iteration, batch in enumerate(dataloader, 1):
                    assert len(batch[0]) == 1

                    #prepare
                    input, upscaled, target = batch[0], batch[1], batch[2]
                    input_np, pscaled_np, target_np = torch.squeeze(input, 0).permute(1, 2, 0).numpy(), torch.squeeze(upscaled, 0).permute(1, 2, 0).numpy(), torch.squeeze(target, 0).permute(1, 2, 0).numpy()
                    input, upscaled, target =  input.to(self.device), upscaled.to(self.device), target.to(self.device)
                    output = self.model(input, output_node)
                    torch.cuda.synchronize()

                    output = torch.squeeze(torch.clamp(output, min=0, max=1.), 0).permute(1, 2, 0)
                    output_np = output.to('cpu').numpy()
                    '''
                    misc.imsave('{}/{}_{}_output.png'.format(self.opt.result_dir, lr, iteration), output_np)
                    misc.imsave('{}/{}_{}_baseline.png'.format(self.opt.result_dir, lr, iteration), upscaled_np)
                    misc.imsave('{}/{}_{}_target.png'.format(self.opt.result_dir, lr, iteration), target_np)
                    '''
                    input_queue.put((lr, iteration, input_np, output_np, target_np))
                    elapsed_time = timer.toc()
                    util.print_progress(iteration, len(self.dataset), 'Test Progress ({}p - {}sec):'.format(lr, round(elapsed_time, 2)), 'Complete', 1, 50)

            #terminate
            for _ in range(len(process_list)):
                input_queue.put(('end', ))

    #get psnr, ssim of super-resolution 
Example #9
Source File: trainer.py    From AWSRN with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.6e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)

            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #10
Source File: trainer_finetune.py    From 3D_Appearance_SR with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()
        # from IPython import embed; embed(); exit()
        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, nl, mk, hr, _, idx_scale) in enumerate(self.loader_train):
            # from IPython import embed; embed(); exit()
            lr, nl, mk, hr = self.prepare([lr, nl, mk, hr])
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(idx_scale, lr, nl, mk)
            # from IPython import embed; embed(); exit()
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.3f}+{:.3f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()
            # from IPython import embed; embed(); exit()
        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #11
Source File: trainer.py    From NTIRE2019_EDRN with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            #print(hr)
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()
            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr,hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))
            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()
        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1]
        if self.args.train_only:
            #self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch))
            self.ckp.save(self, epoch, is_best=False) 
Example #12
Source File: trainer.py    From NTIRE2019_EDRN with MIT License 4 votes vote down vote up
def test(self):
        #if self.args.test_only:
        #    self.scheduler.step() #just for remake the curve of psnr
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                #eval_ssim = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr,filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare(lr, hr)
                    else:
                        lr, = self.prepare(lr)

                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)
                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        #save_list.extend([lr, hr])
                        #eval_ssim += utility.calc_ssim(
                        #    sr, hr, scale
                        #)
                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale,epoch)
                #del lr,hr,sr,idx_img,filename,save_list
                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f}(Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )
            #del idx_scale,scale,tqdm_test
        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch))
            #self.ckp.save(self, epoch, is_best=False)
        else:
            self.ckp.save_for_test(epoch) 
Example #13
Source File: trainer.py    From 2018_subeesh_epsr_eccvw with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare([lr, hr])
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #14
Source File: trainer.py    From 2018_subeesh_epsr_eccvw with MIT License 4 votes vote down vote up
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare([lr, hr])
                    else:
                        lr = self.prepare([lr])[0]
                    print(lr.shape)
                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)
                       
                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
Example #15
Source File: trainer.py    From MSRN-PyTorch with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare([lr, hr])
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #16
Source File: trainer.py    From MSRN-PyTorch with MIT License 4 votes vote down vote up
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare([lr, hr])
                    else:
                        lr = self.prepare([lr])[0]

                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        #self.ckp.save_results(filename, save_list, scale)
                        self.ckp.save_results_nopostfix(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s, ave time: {:.2f}s\n'.format(timer_test.toc(), timer_test.toc()/len(self.loader_test)), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
Example #17
Source File: trainer.py    From MSRN-PyTorch with MIT License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            if loss.item() < self.args.skip_threshold * self.error_last:
                loss.backward()
                self.optimizer.step()
            else:
                print('Skip this batch {}! (Loss: {})'.format(
                    batch + 1, loss.item()
                ))

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #18
Source File: trainer.py    From MSRN-PyTorch with MIT License 4 votes vote down vote up
def test(self):
        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(torch.zeros(1, len(self.scale)))
        self.model.eval()

        timer_test = utility.timer()
        with torch.no_grad():
            for idx_scale, scale in enumerate(self.scale):
                eval_acc = 0
                self.loader_test.dataset.set_scale(idx_scale)
                tqdm_test = tqdm(self.loader_test, ncols=80)
                for idx_img, (lr, hr, filename, _) in enumerate(tqdm_test):
                    filename = filename[0]
                    no_eval = (hr.nelement() == 1)
                    if not no_eval:
                        lr, hr = self.prepare(lr, hr)
                    else:
                        lr, = self.prepare(lr)

                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    if not no_eval:
                        eval_acc += utility.calc_psnr(
                            sr, hr, scale, self.args.rgb_range,
                            benchmark=self.loader_test.dataset.benchmark
                        )
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(filename, save_list, scale)

                self.ckp.log[-1, idx_scale] = eval_acc / len(self.loader_test)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        self.args.data_test,
                        scale,
                        self.ckp.log[-1, idx_scale],
                        best[0][idx_scale],
                        best[1][idx_scale] + 1
                    )
                )

        self.ckp.write_log(
            'Total time: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0] + 1 == epoch)) 
Example #19
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #20
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #21
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(
            torch.zeros(1, len(self.loader_test), len(self.scale))
        )
        self.model.eval()

        timer_test = utility.timer()
        if self.args.save_results: self.ckp.begin_background()
        for idx_data, d in enumerate(self.loader_test):
            for idx_scale, scale in enumerate(self.scale):
                d.dataset.set_scale(idx_scale)
                for lr, hr, filename, _ in tqdm(d, ncols=80):
                    lr, hr = self.prepare(lr, hr)
                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr(
                        sr, hr, scale, self.args.rgb_range, dataset=d
                    )
                    if self.args.save_gt:
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(d, filename[0], save_list, scale)

                self.ckp.log[-1, idx_data, idx_scale] /= len(d)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        d.dataset.name,
                        scale,
                        self.ckp.log[-1, idx_data, idx_scale],
                        best[0][idx_data, idx_scale],
                        best[1][idx_data, idx_scale] + 1
                    )
                )

        self.ckp.write_log('Forward: {:.2f}s\n'.format(timer_test.toc()))
        self.ckp.write_log('Saving...')

        if self.args.save_results: self.ckp.end_background()
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0, 0] + 1 == epoch))

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )

        torch.set_grad_enabled(True) 
Example #22
Source File: videotester.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
            vidwri = cv2.VideoWriter(
                self.ckp.get_path('{}_x{}.avi'.format(self.filename, scale)),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            tqdm_test = tqdm(range(total_frames), ncols=80)
            for _ in tqdm_test:
                success, lr = vidcap.read()
                if not success: break

                lr, = common.set_channel(lr, n_channels=self.args.n_colors)
                lr, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
                lr, = self.prepare(lr.unsqueeze(0))
                sr = self.model(lr, idx_scale)
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        torch.set_grad_enabled(True) 
Example #23
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #24
Source File: videotester.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
            vidwri = cv2.VideoWriter(
                self.ckp.get_path('{}_x{}.avi'.format(self.filename, scale)),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            tqdm_test = tqdm(range(total_frames), ncols=80)
            for _ in tqdm_test:
                success, lr = vidcap.read()
                if not success: break

                lr, = common.set_channel(lr, n_channels=self.args.n_colors)
                lr, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
                lr, = self.prepare(lr.unsqueeze(0))
                sr = self.model(lr, idx_scale)
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        torch.set_grad_enabled(True) 
Example #25
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1] 
Example #26
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        epoch = self.scheduler.last_epoch + 1
        self.ckp.write_log('\nEvaluation:')
        self.ckp.add_log(
            torch.zeros(1, len(self.loader_test), len(self.scale))
        )
        self.model.eval()

        timer_test = utility.timer()
        if self.args.save_results: self.ckp.begin_background()
        for idx_data, d in enumerate(self.loader_test):
            for idx_scale, scale in enumerate(self.scale):
                d.dataset.set_scale(idx_scale)
                for lr, hr, filename, _ in tqdm(d, ncols=80):
                    lr, hr = self.prepare(lr, hr)
                    sr = self.model(lr, idx_scale)
                    sr = utility.quantize(sr, self.args.rgb_range)

                    save_list = [sr]
                    self.ckp.log[-1, idx_data, idx_scale] += utility.calc_psnr(
                        sr, hr, scale, self.args.rgb_range, dataset=d
                    )
                    if self.args.save_gt:
                        save_list.extend([lr, hr])

                    if self.args.save_results:
                        self.ckp.save_results(d, filename[0], save_list, scale)

                self.ckp.log[-1, idx_data, idx_scale] /= len(d)
                best = self.ckp.log.max(0)
                self.ckp.write_log(
                    '[{} x{}]\tPSNR: {:.3f} (Best: {:.3f} @epoch {})'.format(
                        d.dataset.name,
                        scale,
                        self.ckp.log[-1, idx_data, idx_scale],
                        best[0][idx_data, idx_scale],
                        best[1][idx_data, idx_scale] + 1
                    )
                )

        self.ckp.write_log('Forward: {:.2f}s\n'.format(timer_test.toc()))
        self.ckp.write_log('Saving...')

        if self.args.save_results: self.ckp.end_background()
        if not self.args.test_only:
            self.ckp.save(self, epoch, is_best=(best[1][0, 0] + 1 == epoch))

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )

        torch.set_grad_enabled(True) 
Example #27
Source File: videotester.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
            vidwri = cv2.VideoWriter(
                self.ckp.get_path('{}_x{}.avi'.format(self.filename, scale)),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            tqdm_test = tqdm(range(total_frames), ncols=80)
            for _ in tqdm_test:
                success, lr = vidcap.read()
                if not success: break

                lr, = common.set_channel(lr, n_channels=self.args.n_colors)
                lr, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
                lr, = self.prepare(lr.unsqueeze(0))
                sr = self.model(lr, idx_scale)
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        torch.set_grad_enabled(True) 
Example #28
Source File: videotester.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
            vidwri = cv2.VideoWriter(
                self.ckp.get_path('{}_x{}.avi'.format(self.filename, scale)),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            tqdm_test = tqdm(range(total_frames), ncols=80)
            for _ in tqdm_test:
                success, lr = vidcap.read()
                if not success: break

                lr, = common.set_channel(lr, n_channels=self.args.n_colors)
                lr, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
                lr, = self.prepare(lr.unsqueeze(0))
                sr = self.model(lr, idx_scale)
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        torch.set_grad_enabled(True) 
Example #29
Source File: videotester.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def test(self):
        torch.set_grad_enabled(False)

        self.ckp.write_log('\nEvaluation on video:')
        self.model.eval()

        timer_test = utility.timer()
        for idx_scale, scale in enumerate(self.scale):
            vidcap = cv2.VideoCapture(self.args.dir_demo)
            total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
            vidwri = cv2.VideoWriter(
                self.ckp.get_path('{}_x{}.avi'.format(self.filename, scale)),
                cv2.VideoWriter_fourcc(*'XVID'),
                vidcap.get(cv2.CAP_PROP_FPS),
                (
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                    int(scale * vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                )
            )

            tqdm_test = tqdm(range(total_frames), ncols=80)
            for _ in tqdm_test:
                success, lr = vidcap.read()
                if not success: break

                lr, = common.set_channel(lr, n_channels=self.args.n_colors)
                lr, = common.np2Tensor(lr, rgb_range=self.args.rgb_range)
                lr, = self.prepare(lr.unsqueeze(0))
                sr = self.model(lr, idx_scale)
                sr = utility.quantize(sr, self.args.rgb_range).squeeze(0)

                normalized = sr * 255 / self.args.rgb_range
                ndarr = normalized.byte().permute(1, 2, 0).cpu().numpy()
                vidwri.write(ndarr)

            vidcap.release()
            vidwri.release()

        self.ckp.write_log(
            'Total: {:.2f}s\n'.format(timer_test.toc()), refresh=True
        )
        torch.set_grad_enabled(True) 
Example #30
Source File: trainer.py    From OISR-PyTorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def train(self):
        self.scheduler.step()
        self.loss.step()
        epoch = self.scheduler.last_epoch + 1
        lr = self.scheduler.get_lr()[0]

        self.ckp.write_log(
            '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr))
        )
        self.loss.start_log()
        self.model.train()

        timer_data, timer_model = utility.timer(), utility.timer()
        for batch, (lr, hr, _, idx_scale) in enumerate(self.loader_train):
            lr, hr = self.prepare(lr, hr)
            timer_data.hold()
            timer_model.tic()

            self.optimizer.zero_grad()
            sr = self.model(lr, idx_scale)
            loss = self.loss(sr, hr)
            loss.backward()
            if self.args.gclip > 0:
                utils.clip_grad_value_(
                    self.model.parameters(),
                    self.args.gclip
                )
            self.optimizer.step()

            timer_model.hold()

            if (batch + 1) % self.args.print_every == 0:
                self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}s'.format(
                    (batch + 1) * self.args.batch_size,
                    len(self.loader_train.dataset),
                    self.loss.display_loss(batch),
                    timer_model.release(),
                    timer_data.release()))

            timer_data.tic()

        self.loss.end_log(len(self.loader_train))
        self.error_last = self.loss.log[-1, -1]