Python sklearn.gaussian_process.kernels.ConstantKernel() Examples
The following are 6
code examples of sklearn.gaussian_process.kernels.ConstantKernel().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.gaussian_process.kernels
, or try the search function
.
Example #1
Source File: test_gpc.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml
Example #2
Source File: gaussianproc.py From pyFTS with GNU General Public License v3.0 | 6 votes |
def __init__(self, **kwargs): super(GPR, self).__init__(**kwargs) self.name = "GPR" self.detail = "Gaussian Process Regression" self.is_high_order = True self.has_point_forecasting = True self.has_interval_forecasting = True self.has_probability_forecasting = True self.uod_clip = False self.benchmark_only = True self.min_order = 1 self.alpha = kwargs.get("alpha", 0.05) self.data = None self.lscale = kwargs.get('length_scale', 1) self.kernel = ConstantKernel(1.0) * RBF(length_scale=self.lscale) self.model = GaussianProcessRegressor(kernel=self.kernel, alpha=.05, n_restarts_optimizer=10, normalize_y=False) #self.model_fit = None
Example #3
Source File: test_gpc.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml
Example #4
Source File: track_lib.py From TNT with GNU General Public License v3.0 | 5 votes |
def GP_regression(tr_x,tr_y,test_x): A = np.ones((len(tr_x),2)) A[:,0] = tr_x[:,0] p = np.matmul(np.linalg.pinv(A),tr_y) mean_tr_y = np.matmul(A,p) A = np.ones((len(test_x),2)) A[:,0] = test_x[:,0] mean_test_y = np.matmul(A,p) kernel = ConstantKernel(100,(1e-5, 1e5))*RBF(1, (1e-5, 1e5))+RBF(1, (1e-5, 1e5)) gp = GaussianProcessRegressor(kernel=kernel, alpha=1, n_restarts_optimizer=9) gp.fit(tr_x, tr_y-mean_tr_y) test_y, sigma = gp.predict(test_x, return_std=True) test_y = test_y+mean_test_y #import pdb; pdb.set_trace() return test_y
Example #5
Source File: track_lib.py From TNT with GNU General Public License v3.0 | 5 votes |
def GP_regression(tr_x,tr_y,test_x): A = np.ones((len(tr_x),2)) A[:,0] = tr_x[:,0] p = np.matmul(np.linalg.pinv(A),tr_y) mean_tr_y = np.matmul(A,p) A = np.ones((len(test_x),2)) A[:,0] = test_x[:,0] mean_test_y = np.matmul(A,p) kernel = ConstantKernel(100,(1e-5, 1e5))*RBF(1, (1e-5, 1e5))+RBF(1, (1e-5, 1e5)) gp = GaussianProcessRegressor(kernel=kernel, alpha=1, n_restarts_optimizer=9) gp.fit(tr_x, tr_y-mean_tr_y) test_y, sigma = gp.predict(test_x, return_std=True) test_y = test_y+mean_test_y #import pdb; pdb.set_trace() return test_y
Example #6
Source File: kernels.py From chocolate with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, space): self.space = space self.k = kernels.ConstantKernel() * kernels.RBF()