Python beam_search.run_beam_search() Examples
The following are 7
code examples of beam_search.run_beam_search().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
beam_search
, or try the search function
.
Example #1
Source File: decode.py From MAX-Text-Summarizer with Apache License 2.0 | 5 votes |
def decode(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" # t0 = time.time() batch = self._batcher.next_batch() # 1 example repeated across batch original_article = batch.original_articles[0] # string original_abstract = batch.original_abstracts[0] # string # input data article_withunks = data.show_art_oovs(original_article, self._vocab) # string abstract_withunks = data.show_abs_oovs(original_abstract, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # string # Run beam search to get best Hypothesis best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] decoded_words = data.outputids2words(output_ids, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # Remove the [STOP] token from decoded_words, if necessary try: fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol decoded_words = decoded_words[:fst_stop_idx] except ValueError: decoded_words = decoded_words decoded_output = ' '.join(decoded_words) # single string # tf.logging.info('ARTICLE: %s', article) # tf.logging.info('GENERATED SUMMARY: %s', decoded_output) sys.stdout.write(decoded_output)
Example #2
Source File: evaluate.py From unified-summarization with MIT License | 5 votes |
def evaluate(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" t0 = time.time() counter = 0 while True: batch = self._batcher.next_batch() # 1 example repeated across batch if batch is None: # finished decoding dataset in single_pass mode assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode" tf.logging.info("Decoder has finished reading dataset for single_pass.") tf.logging.info("Output has been saved in %s and %s. Starting ROUGE eval...", self._rouge_ref_dir, self._rouge_dec_dir) rouge_results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir) rouge_results, rouge_results_str = rouge_log(rouge_results_dict, self._decode_dir) t1 = time.time() tf.logging.info("evaluation time: %.3f min", (t1-t0)/60.0) return rouge_results, rouge_results_str if FLAGS.decode_method == 'greedy': output_ids = self._model.run_greedy_search(self._sess, batch) for i in range(FLAGS.batch_size): self.process_one_article(batch.original_articles_sents[i], batch.original_abstracts_sents[i], \ batch.original_extracts_ids[i], output_ids[i], \ batch.art_oovs[i], None, None, None, None, None, counter) counter += 1 elif FLAGS.decode_method == 'beam': # Get sentence probabilities from selector selector_output = self._model._selector.run_eval_step(self._sess, batch, probs_only=True) sent_probs = selector_output['probs'][0].tolist() # Run beam search to get best Hypothesis best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] # remove start token best_hyp.log_probs = best_hyp.log_probs[1:] # remove start token probability self.process_one_article(batch.original_articles_sents[0], batch.original_abstracts_sents[0], \ batch.original_extracts_ids[0], output_ids, batch.art_oovs[0], \ best_hyp.attn_dists_norescale, best_hyp.attn_dists, \ best_hyp.p_gens, best_hyp.log_probs, sent_probs, counter) counter += 1
Example #3
Source File: decode.py From unified-summarization with MIT License | 5 votes |
def evaluate(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" t0 = time.time() counter = 0 while True: batch = self._batcher.next_batch() # 1 example repeated across batch if batch is None: # finished decoding dataset in single_pass mode assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode" tf.logging.info("Decoder has finished reading dataset for single_pass.") tf.logging.info("Output has been saved in %s and %s. Starting ROUGE eval...", self._rouge_ref_dir, self._rouge_dec_dir) rouge_results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir) rouge_results, rouge_results_str = rouge_log(rouge_results_dict, self._decode_dir) t1 = time.time() tf.logging.info("evaluation time: %.3f min", (t1-t0)/60.0) return rouge_results, rouge_results_str if FLAGS.decode_method == 'greedy': output_ids = self._model.run_greedy_search(self._sess, batch) for i in range(FLAGS.batch_size): self.process_one_article(batch.original_articles_sents[i], batch.original_abstracts_sents[i], \ batch.original_extracts_ids[i], output_ids[i], \ batch.art_oovs[i], None, None, None, counter) counter += 1 elif FLAGS.decode_method == 'beam': # Run beam search to get best Hypothesis best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] # remove start token best_hyp.log_probs = best_hyp.log_probs[1:] # remove start token probability self.process_one_article(batch.original_articles_sents[0], batch.original_abstracts_sents[0], \ batch.original_extracts_ids[0], output_ids, batch.art_oovs[0], \ best_hyp.attn_dists, best_hyp.p_gens, best_hyp.log_probs, counter) counter += 1
Example #4
Source File: decode.py From TransferRL with MIT License | 4 votes |
def decode(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" t0 = time.time() counter = FLAGS.decode_after while True: tf.reset_default_graph() batch = self._batcher.next_batch() # 1 example repeated across batch if batch is None: # finished decoding dataset in single_pass mode assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode" tf.logging.info("Decoder has finished reading dataset for single_pass.") tf.logging.info("Output has been saved in %s and %s. Now starting ROUGE eval...", self._rouge_ref_dir, self._rouge_dec_dir) results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir) rouge_log(results_dict, self._decode_dir) return original_article = batch.original_articles[0] # string original_abstract = batch.original_abstracts[0] # string original_abstract_sents = batch.original_abstracts_sents[0] # list of strings if len(original_abstract_sents) == 0: print("NOOOOO!!!!, An empty abstract :(") continue article_withunks = data.show_art_oovs(original_article, self._vocab) # string abstract_withunks = data.show_abs_oovs(original_abstract, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # string # Run beam search to get best Hypothesis if FLAGS.ac_training: best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch, self._dqn, self._dqn_sess, self._dqn_graph) else: best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] decoded_words = data.outputids2words(output_ids, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # Remove the [STOP] token from decoded_words, if necessary try: fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol decoded_words = decoded_words[:fst_stop_idx] except ValueError: decoded_words = decoded_words decoded_output = ' '.join(decoded_words) # single string if FLAGS.single_pass: self.write_for_rouge(original_abstract_sents, decoded_words, counter) # write ref summary and decoded summary to file, to eval with pyrouge later counter += 1 # this is how many examples we've decoded else: print_results(article_withunks, abstract_withunks, decoded_output) # log output to screen self.write_for_attnvis(article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists, best_hyp.p_gens) # write info to .json file for visualization tool # Check if SECS_UNTIL_NEW_CKPT has elapsed; if so return so we can load a new checkpoint t1 = time.time() if t1-t0 > SECS_UNTIL_NEW_CKPT: tf.logging.info('We\'ve been decoding with same checkpoint for %i seconds. Time to load new checkpoint', t1-t0) _ = util.load_ckpt(self._saver, self._sess, FLAGS.decode_from) t0 = time.time()
Example #5
Source File: decode.py From RLSeq2Seq with MIT License | 4 votes |
def decode(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" t0 = time.time() counter = FLAGS.decode_after while True: tf.reset_default_graph() batch = self._batcher.next_batch() # 1 example repeated across batch if batch is None: # finished decoding dataset in single_pass mode assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode" tf.logging.info("Decoder has finished reading dataset for single_pass.") tf.logging.info("Output has been saved in %s and %s. Now starting ROUGE eval...", self._rouge_ref_dir, self._rouge_dec_dir) results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir) rouge_log(results_dict, self._decode_dir) return original_article = batch.original_articles[0] # string original_abstract = batch.original_abstracts[0] # string original_abstract_sents = batch.original_abstracts_sents[0] # list of strings article_withunks = data.show_art_oovs(original_article, self._vocab) # string abstract_withunks = data.show_abs_oovs(original_abstract, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # string # Run beam search to get best Hypothesis if FLAGS.ac_training: best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch, self._dqn, self._dqn_sess, self._dqn_graph) else: best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] decoded_words = data.outputids2words(output_ids, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # Remove the [STOP] token from decoded_words, if necessary try: fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol decoded_words = decoded_words[:fst_stop_idx] except ValueError: decoded_words = decoded_words decoded_output = ' '.join(decoded_words) # single string if FLAGS.single_pass: self.write_for_rouge(original_abstract_sents, decoded_words, counter) # write ref summary and decoded summary to file, to eval with pyrouge later counter += 1 # this is how many examples we've decoded else: print_results(article_withunks, abstract_withunks, decoded_output) # log output to screen self.write_for_attnvis(article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists, best_hyp.p_gens) # write info to .json file for visualization tool # Check if SECS_UNTIL_NEW_CKPT has elapsed; if so return so we can load a new checkpoint t1 = time.time() if t1-t0 > SECS_UNTIL_NEW_CKPT: tf.logging.info('We\'ve been decoding with same checkpoint for %i seconds. Time to load new checkpoint', t1-t0) _ = util.load_ckpt(self._saver, self._sess, FLAGS.decode_from) t0 = time.time()
Example #6
Source File: decode.py From long-summarization with Apache License 2.0 | 4 votes |
def decode(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" t0 = time.time() counter = 0 all_decoded = {} # a dictionary keeping the decoded files to be written for visualization while True: batch = self._batcher.next_batch() # 1 example repeated across batch if batch is None: # finished decoding dataset in single_pass mode assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode" tf.logging.info("Decoder has finished reading dataset for single_pass.") tf.logging.info("Output has been saved in %s and %s. Now starting ROUGE eval...", self._rouge_ref_dir, self._rouge_dec_dir) results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir) rouge_log(results_dict, self._decode_dir) if FLAGS.single_pass: self.write_all_for_attnvis(all_decoded) return original_article = batch.original_articles[0] # string original_abstract = batch.original_abstracts[0] # string original_abstract_sents = batch.original_abstracts_sents[0] # list of strings article_id = batch.article_ids[0] #string article_withunks = data.show_art_oovs(original_article, self._vocab) # string abstract_withunks = data.show_abs_oovs(original_abstract, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # string # Run beam search to get best Hypothesis # import pdb; pdb.set_trace() best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] decoded_words = data.outputids2words(output_ids, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # Remove the [STOP] token from decoded_words, if necessary try: fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol decoded_words = decoded_words[:fst_stop_idx] except ValueError: decoded_words = decoded_words decoded_output = ' '.join(decoded_words) # single string if FLAGS.single_pass: self.write_for_rouge(original_abstract_sents, decoded_words, article_id) # write ref summary and decoded summary to file, to eval with pyrouge later print_results(article_withunks, abstract_withunks, decoded_output, article_id) # log output to screen all_decoded[article_id] = self.prepare_for_attnvis(article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists, best_hyp.p_gens, best_hyp.attn_dists_sec) counter += 1 # this is how many examples we've decoded self.write_for_attnvis(article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists, best_hyp.p_gens, best_hyp.attn_dists_sec) # write info to .json file for visualization tool else: print_results(article_withunks, abstract_withunks, decoded_output, article_id) # log output to screen self.write_for_attnvis(article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists, best_hyp.p_gens, best_hyp.attn_dists_sec) # write info to .json file for visualization tool # Check if SECS_UNTIL_NEW_CKPT has elapsed; if so return so we can load a new checkpoint t1 = time.time() if t1-t0 > SECS_UNTIL_NEW_CKPT: tf.logging.info('We\'ve been decoding with same checkpoint for %i seconds. Time to load new checkpoint', t1-t0) _ = util.load_ckpt(self._saver, self._sess) t0 = time.time()
Example #7
Source File: decode.py From pointer-generator with Apache License 2.0 | 4 votes |
def decode(self): """Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode indefinitely, loading latest checkpoint at regular intervals""" t0 = time.time() counter = 0 while True: batch = self._batcher.next_batch() # 1 example repeated across batch if batch is None: # finished decoding dataset in single_pass mode assert FLAGS.single_pass, "Dataset exhausted, but we are not in single_pass mode" tf.logging.info("Decoder has finished reading dataset for single_pass.") tf.logging.info("Output has been saved in %s and %s. Now starting ROUGE eval...", self._rouge_ref_dir, self._rouge_dec_dir) results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir) rouge_log(results_dict, self._decode_dir) return original_article = batch.original_articles[0] # string original_abstract = batch.original_abstracts[0] # string original_abstract_sents = batch.original_abstracts_sents[0] # list of strings article_withunks = data.show_art_oovs(original_article, self._vocab) # string abstract_withunks = data.show_abs_oovs(original_abstract, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # string # Run beam search to get best Hypothesis best_hyp = beam_search.run_beam_search(self._sess, self._model, self._vocab, batch) # Extract the output ids from the hypothesis and convert back to words output_ids = [int(t) for t in best_hyp.tokens[1:]] decoded_words = data.outputids2words(output_ids, self._vocab, (batch.art_oovs[0] if FLAGS.pointer_gen else None)) # Remove the [STOP] token from decoded_words, if necessary try: fst_stop_idx = decoded_words.index(data.STOP_DECODING) # index of the (first) [STOP] symbol decoded_words = decoded_words[:fst_stop_idx] except ValueError: decoded_words = decoded_words decoded_output = ' '.join(decoded_words) # single string if FLAGS.single_pass: self.write_for_rouge(original_abstract_sents, decoded_words, counter) # write ref summary and decoded summary to file, to eval with pyrouge later counter += 1 # this is how many examples we've decoded else: print_results(article_withunks, abstract_withunks, decoded_output) # log output to screen self.write_for_attnvis(article_withunks, abstract_withunks, decoded_words, best_hyp.attn_dists, best_hyp.p_gens) # write info to .json file for visualization tool # Check if SECS_UNTIL_NEW_CKPT has elapsed; if so return so we can load a new checkpoint t1 = time.time() if t1-t0 > SECS_UNTIL_NEW_CKPT: tf.logging.info('We\'ve been decoding with same checkpoint for %i seconds. Time to load new checkpoint', t1-t0) _ = util.load_ckpt(self._saver, self._sess) t0 = time.time()