Python layers.Embedding() Examples
The following are 14
code examples of layers.Embedding().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
layers
, or try the search function
.
Example #1
Source File: models.py From squad with MIT License | 6 votes |
def __init__(self, word_vectors, hidden_size, drop_prob=0.): super(BiDAF, self).__init__() self.emb = layers.Embedding(word_vectors=word_vectors, hidden_size=hidden_size, drop_prob=drop_prob) self.enc = layers.RNNEncoder(input_size=hidden_size, hidden_size=hidden_size, num_layers=1, drop_prob=drop_prob) self.att = layers.BiDAFAttention(hidden_size=2 * hidden_size, drop_prob=drop_prob) self.mod = layers.RNNEncoder(input_size=8 * hidden_size, hidden_size=hidden_size, num_layers=2, drop_prob=drop_prob) self.out = layers.BiDAFOutput(hidden_size=hidden_size, drop_prob=drop_prob)
Example #2
Source File: graphs.py From DOTA_models with Apache License 2.0 | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.contrib.framework.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #3
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.train.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #4
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.train.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #5
Source File: graphs.py From hands-detection with MIT License | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.contrib.framework.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #6
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.contrib.framework.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #7
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.train.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #8
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.train.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #9
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.train.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #10
Source File: graphs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def __init__(self, cl_logits_input_dim=None): self.global_step = tf.train.get_or_create_global_step() self.vocab_freqs = _get_vocab_freqs() # Cache VatxtInput objects self.cl_inputs = None self.lm_inputs = None # Cache intermediate Tensors that are reused self.tensors = {} # Construct layers which are reused in constructing the LM and # Classification graphs. Instantiating them all once here ensures that # variable reuse works correctly. self.layers = {} self.layers['embedding'] = layers_lib.Embedding( FLAGS.vocab_size, FLAGS.embedding_dims, FLAGS.normalize_embeddings, self.vocab_freqs, FLAGS.keep_prob_emb) self.layers['lstm'] = layers_lib.LSTM( FLAGS.rnn_cell_size, FLAGS.rnn_num_layers, FLAGS.keep_prob_lstm_out) self.layers['lm_loss'] = layers_lib.SoftmaxLoss( FLAGS.vocab_size, FLAGS.num_candidate_samples, self.vocab_freqs, name='LM_loss') cl_logits_input_dim = cl_logits_input_dim or FLAGS.rnn_cell_size self.layers['cl_logits'] = layers_lib.cl_logits_subgraph( [FLAGS.cl_hidden_size] * FLAGS.cl_num_layers, cl_logits_input_dim, FLAGS.num_classes, FLAGS.keep_prob_cl_hidden)
Example #11
Source File: ss.py From neural-image-captioning with MIT License | 4 votes |
def __init__(self, name='ss', nimg=2048, nh=512, nw=512, nout=8843, ns=80, model_file=None): self.name = name if model_file is not None: with h5py.File(model_file, 'r') as f: nimg = f.attrs['nimg'] nh = f.attrs['nh'] nw = f.attrs['nw'] ns = f.attrs['ns'] nout = f.attrs['nout'] self.config = {'nimg': nimg, 'nh': nh, 'nw': nw, 'nout': nout, 'ns': ns} # word embedding layer self.embedding = Embedding(n_emb=nout, dim_emb=nw, name=self.name+'@embedding') # initialization mlp layer self.proj_mlp = MLP(layer_sizes=[nimg, 2*nh], output_type='tanh', name=self.name+'@proj_mlp') # lstm self.lstm = BasicLSTM(dim_x=nw+ns, dim_h=nh, name=self.name+'@lstm') # prediction mlp self.pred_mlp = MLP(layer_sizes=[nh+nw, nout], output_type='softmax', name=self.name+'@pred_mlp') # inputs cap = T.imatrix('cap') img = T.matrix('img') scene = T.matrix('scene') self.inputs = [cap, img, scene] # go through sequence init_state = self.proj_mlp.compute(img) (state, self.p, loss), _ = theano.scan(fn=self.scan_func, sequences=[cap[0:-1, :], cap[1:, :]], outputs_info=[init_state, None, None], non_sequences=[scene]) # loss function loss = T.mean(loss) self.costs = [loss] # layers and parameters self.layers = [self.embedding, self.proj_mlp, self.lstm, self.pred_mlp] self.params = sum([l.params for l in self.layers], []) # load weights from file, if model_file is not None if model_file is not None: self.load_weights(model_file) # initialization for test stage self._init_func = None self._step_func = None self._scene_shared = theano.shared(np.zeros((1, ns)).astype(theano.config.floatX))
Example #12
Source File: gnic.py From neural-image-captioning with MIT License | 4 votes |
def __init__(self, name='gnic', nimg=2048, nh=512, nw=512, nout=8843, model_file=None): self.name = name if model_file is not None: with h5py.File(model_file, 'r') as f: nimg = f.attrs['nimg'] nh = f.attrs['nh'] nw = f.attrs['nw'] nout = f.attrs['nout'] self.config = {'nimg': nimg, 'nh': nh, 'nw': nw, 'nout': nout} # word embedding layer self.embedding = Embedding(n_emb=nout, dim_emb=nw, name=self.name+'@embedding') # initialization mlp layer self.proj_mlp = MLP(layer_sizes=[nimg, 2*nh], output_type='tanh', name=self.name+'@proj_mlp') # lstm self.lstm = BasicLSTM(dim_x=nw, dim_h=nh, name=self.name+'@lstm') # prediction mlp self.pred_mlp = MLP(layer_sizes=[nh+nw, nout], output_type='softmax', name=self.name+'@pred_mlp') # inputs cap = T.imatrix('cap') img = T.matrix('img') self.inputs = [cap, img] # go through sequence init_state = self.proj_mlp.compute(img) (state, self.p, loss), _ = theano.scan(fn=self.scan_func, sequences=[cap[0:-1, :], cap[1:, :]], outputs_info=[init_state, None, None]) # loss function loss = T.mean(loss) self.costs = [loss] # layers and parameters self.layers = [self.embedding, self.proj_mlp, self.lstm, self.pred_mlp] self.params = sum([l.params for l in self.layers], []) # load weights from file, if model_file is not None if model_file is not None: self.load_weights(model_file) # these functions are used in test stage self._init_func = None self._step_func = None
Example #13
Source File: ra.py From neural-image-captioning with MIT License | 4 votes |
def __init__(self, name='ra', nimg=2048, na=512, nh=512, nw=512, nout=8843, npatch=30, model_file=None): self.name = name if model_file is not None: with h5py.File(model_file, 'r') as f: nimg = f.attrs['nimg'] na = f.attrs['na'] nh = f.attrs['nh'] nw = f.attrs['nw'] nout = f.attrs['nout'] # npatch = f.attrs['npatch'] self.config = {'nimg': nimg, 'na': na, 'nh': nh, 'nw': nw, 'nout': nout, 'npatch': npatch} # word embedding layer self.embedding = Embedding(n_emb=nout, dim_emb=nw, name=self.name+'@embedding') # initialization mlp layer self.init_mlp = MLP(layer_sizes=[na, 2*nh], output_type='tanh', name=self.name+'@init_mlp') self.proj_mlp = MLP(layer_sizes=[nimg, na], output_type='tanh', name=self.name+'@proj_mlp') # lstm self.lstm = BasicLSTM(dim_x=na+nw, dim_h=nh, name=self.name+'@lstm') # prediction mlp self.pred_mlp = MLP(layer_sizes=[na+nh+nw, nout], output_type='softmax', name=self.name+'@pred_mlp') # attention layer self.attention = Attention(dim_item=na, dim_context=na+nw+nh, hsize=nh, name=self.name+'@attention') # inputs cap = T.imatrix('cap') img = T.tensor3('img') self.inputs = [cap, img] # go through sequence feat = self.proj_mlp.compute(img) init_e = feat.mean(axis=1) init_state = T.concatenate([init_e, self.init_mlp.compute(init_e)], axis=-1) (state, self.p, loss, self.alpha), _ = theano.scan(fn=self.scan_func, sequences=[cap[0:-1, :], cap[1:, :]], outputs_info=[init_state, None, None, None], non_sequences=[feat]) # loss function loss = T.mean(loss) self.costs = [loss] # layers and parameters self.layers = [self.embedding, self.init_mlp, self.proj_mlp, self.attention, self.lstm, self.pred_mlp] self.params = sum([l.params for l in self.layers], []) # load weights from file, if model_file is not None if model_file is not None: self.load_weights(model_file) # these functions and variables are used in test stage self._init_func = None self._step_func = None self._proj_func = None self._feat_shared = theano.shared(np.zeros((1, npatch, na)).astype(theano.config.floatX))
Example #14
Source File: rass.py From neural-image-captioning with MIT License | 4 votes |
def __init__(self, name='rass', nimg=2048, nh=512, nw=512, na=512, nout=8843, ns=80, npatch=30, model_file=None): self.name = name if model_file is not None: with h5py.File(model_file, 'r') as f: nimg = f.attrs['nimg'] nh = f.attrs['nh'] nw = f.attrs['nw'] na = f.attrs['na'] ns = f.attrs['ns'] nout = f.attrs['nout'] self.config = {'nimg': nimg, 'nh': nh, 'nw': nw, 'na': na, 'nout': nout, 'ns': ns, 'npatch': npatch} # word embedding layer self.embedding = Embedding(n_emb=nout, dim_emb=nw, name=self.name+'@embedding') # initialization mlp layer self.init_mlp = MLP(layer_sizes=[na, 2*nh], output_type='tanh', name=self.name+'@init_mlp') self.proj_mlp = MLP(layer_sizes=[nimg, na], output_type='tanh', name=self.name+'@proj_mlp') # attention layer self.attention = Attention(dim_item=na, dim_context=na+nw+nh, hsize=nh, name=self.name+'@attention') # lstm self.lstm = BasicLSTM(dim_x=na+nw+ns, dim_h=nh, name=self.name+'@lstm') # prediction mlp self.pred_mlp = MLP(layer_sizes=[na+nh+nw+ns, nout], output_type='softmax', name=self.name+'@pred_mlp') # inputs cap = T.imatrix('cap') img = T.tensor3('img') scene = T.matrix('scene') self.inputs = [cap, img, scene] # go through sequence feat = self.proj_mlp.compute(img) init_e = feat.mean(axis=1) init_state = T.concatenate([init_e, self.init_mlp.compute(init_e)], axis=-1) (state, self.p, loss, self.alpha), _ = theano.scan(fn=self.scan_func, sequences=[cap[0:-1, :], cap[1:, :]], outputs_info=[init_state, None, None, None], non_sequences=[feat, scene]) # loss function loss = T.mean(loss) self.costs = [loss] # layers and parameters self.layers = [self.embedding, self.init_mlp, self.proj_mlp, self.attention, self.lstm, self.pred_mlp] self.params = sum([l.params for l in self.layers], []) # load weights from file, if model_file is not None if model_file is not None: self.load_weights(model_file) # initialization for test stage self._init_func = None self._step_func = None self._proj_func = None self._feat_shared = theano.shared(np.zeros((1, npatch, na)).astype(theano.config.floatX)) self._scene_shared = theano.shared(np.zeros((1, ns)).astype(theano.config.floatX))