Python layers.classification_loss() Examples
The following are 30
code examples of layers.classification_loss().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
layers
, or try the search function
.
Example #1
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #2
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #3
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) return total_loss
Example #4
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #5
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) return total_loss
Example #6
Source File: graphs.py From object_detection_with_tensorflow with MIT License | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #7
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights acc = layers_lib.accuracy(logits, labels, weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #8
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, labels, weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #9
Source File: graphs.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #10
Source File: graphs.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) return total_loss
Example #11
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights acc = layers_lib.accuracy(logits, labels, weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #12
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, labels, weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #13
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #14
Source File: graphs.py From models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #15
Source File: graphs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights acc = layers_lib.accuracy(logits, labels, weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #16
Source File: graphs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, labels, weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #17
Source File: graphs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #18
Source File: graphs.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #19
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, labels, weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #20
Source File: graphs.py From DOTA_models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #21
Source File: graphs.py From DOTA_models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) return total_loss
Example #22
Source File: graphs.py From DOTA_models with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #23
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) return total_loss
Example #24
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim] inputs: VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_state, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs lstm_out, next_state = self.layers['lstm'](embedded, inputs.state, inputs.length) logits = self.layers['cl_logits'](lstm_out) loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights) if return_intermediates: return lstm_out, next_state, logits, loss else: return loss
Example #25
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) return total_loss
Example #26
Source File: graphs.py From yolo_v2 with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss
Example #27
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss if FLAGS.single_label: indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1) labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1) weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1) else: labels = inputs.labels weights = inputs.weights acc = layers_lib.accuracy(logits, labels, weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #28
Source File: graphs.py From DOTA_models with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput object in `self.cl_inputs` * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False) self.cl_inputs = inputs embedded = self.layers['embedding'](inputs.tokens) self.tensors['cl_embedded'] = embedded _, next_state, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss tf.summary.scalar('total_classification_loss', total_loss) with tf.control_dependencies([inputs.save_state(next_state)]): total_loss = tf.identity(total_loss) return total_loss
Example #29
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 5 votes |
def classifier_graph(self): """Constructs classifier graph from inputs to classifier loss. * Caches the VatxtInput objects in `self.cl_inputs` * Caches tensors: `cl_embedded` (tuple of forward and reverse), `cl_logits`, `cl_loss` Returns: loss: scalar float. """ inputs = _inputs('train', pretrain=False, bidir=True) self.cl_inputs = inputs f_inputs, _ = inputs # Embed both forward and reverse with a shared embedding embedded = [self.layers['embedding'](inp.tokens) for inp in inputs] self.tensors['cl_embedded'] = embedded _, next_states, logits, loss = self.cl_loss_from_embedding( embedded, return_intermediates=True) tf.summary.scalar('classification_loss', loss) self.tensors['cl_logits'] = logits self.tensors['cl_loss'] = loss acc = layers_lib.accuracy(logits, f_inputs.labels, f_inputs.weights) tf.summary.scalar('accuracy', acc) adv_loss = (self.adversarial_loss() * tf.constant( FLAGS.adv_reg_coeff, name='adv_reg_coeff')) tf.summary.scalar('adversarial_loss', adv_loss) total_loss = loss + adv_loss saves = [inp.save_state(state) for (inp, state) in zip(inputs, next_states)] with tf.control_dependencies(saves): total_loss = tf.identity(total_loss) tf.summary.scalar('total_classification_loss', total_loss) return total_loss
Example #30
Source File: graphs.py From Gun-Detector with Apache License 2.0 | 5 votes |
def cl_loss_from_embedding(self, embedded, inputs=None, return_intermediates=False): """Compute classification loss from embedding. Args: embedded: Length 2 tuple of 3-D float Tensor [batch_size, num_timesteps, embedding_dim]. inputs: Length 2 tuple of VatxtInput, defaults to self.cl_inputs. return_intermediates: bool, whether to return intermediate tensors or only the final loss. Returns: If return_intermediates is True: lstm_out, next_states, logits, loss Else: loss """ if inputs is None: inputs = self.cl_inputs out = [] for (layer_name, emb, inp) in zip(['lstm', 'lstm_reverse'], embedded, inputs): out.append(self.layers[layer_name](emb, inp.state, inp.length)) lstm_outs, next_states = zip(*out) # Concatenate output of forward and reverse LSTMs lstm_out = tf.concat(lstm_outs, 1) logits = self.layers['cl_logits'](lstm_out) f_inputs, _ = inputs # pylint: disable=unpacking-non-sequence loss = layers_lib.classification_loss(logits, f_inputs.labels, f_inputs.weights) if return_intermediates: return lstm_out, next_states, logits, loss else: return loss