Python tensorflow.python.training.training_util.global_step() Examples
The following are 30
code examples of tensorflow.python.training.training_util.global_step().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.training.training_util
, or try the search function
.
Example #1
Source File: supervisor.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step)
Example #2
Source File: supervisor.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def __init__(self, sv, sess, step_counter=None): """Create a `SVStepCounterThread`. Args: sv: A `Supervisor`. sess: A `Session`. step_counter: A `Tensor` holding the step counter. By defaults, it uses sv.global_step. """ super(SVStepCounterThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess self._last_time = 0.0 self._last_step = 0 step_counter = sv.global_step if step_counter is None else step_counter self._step_counter = step_counter self._summary_tag = "%s/sec" % self._step_counter.op.name
Example #3
Source File: supervisor.py From keras-lambda with MIT License | 6 votes |
def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._sv.global_step) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second steps_per_sec = added_steps / elapsed_time summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec)
Example #4
Source File: supervisor.py From ctw-baseline with MIT License | 6 votes |
def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step)
Example #5
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 6 votes |
def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step)
Example #6
Source File: supervisor.py From ctw-baseline with MIT License | 6 votes |
def __init__(self, sv, sess, step_counter=None): """Create a `SVStepCounterThread`. Args: sv: A `Supervisor`. sess: A `Session`. step_counter: A `Tensor` holding the step counter. By defaults, it uses sv.global_step. """ super(SVStepCounterThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess self._last_time = 0.0 self._last_step = 0 step_counter = sv.global_step if step_counter is None else step_counter self._step_counter = step_counter self._summary_tag = "%s/sec" % self._step_counter.op.name
Example #7
Source File: supervisor.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step)
Example #8
Source File: supervisor.py From ctw-baseline with MIT License | 6 votes |
def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._step_counter) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second if elapsed_time > 0.: steps_per_sec = added_steps / elapsed_time else: steps_per_sec = float("inf") summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec)
Example #9
Source File: supervisor.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._step_counter) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second if elapsed_time > 0.: steps_per_sec = added_steps / elapsed_time else: steps_per_sec = float("inf") summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec)
Example #10
Source File: supervisor.py From keras-lambda with MIT License | 6 votes |
def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step)
Example #11
Source File: supervisor.py From lambda-packs with MIT License | 6 votes |
def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._step_counter) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second if elapsed_time > 0.: steps_per_sec = added_steps / elapsed_time else: steps_per_sec = float("inf") summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec)
Example #12
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 6 votes |
def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._sv.global_step) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second steps_per_sec = added_steps / elapsed_time summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec)
Example #13
Source File: supervisor.py From lambda-packs with MIT License | 6 votes |
def summary_computed(self, sess, summary, global_step=None): """Indicate that a summary was computed. Args: sess: A `Session` object. summary: A Summary proto, or a string holding a serialized summary proto. global_step: Int. global step this summary is associated with. If `None`, it will try to fetch the current step. Raises: TypeError: if 'summary' is not a Summary proto or a string. RuntimeError: if the Supervisor was created without a `logdir`. """ if not self._summary_writer: raise RuntimeError("Writing a summary requires a summary writer.") if global_step is None and self.global_step is not None: global_step = training_util.global_step(sess, self.global_step) self._summary_writer.add_summary(summary, global_step)
Example #14
Source File: supervisor.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def run_loop(self): # Count the steps. current_step = training_util.global_step(self._sess, self._sv.global_step) added_steps = current_step - self._last_step self._last_step = current_step # Measure the elapsed time. current_time = time.time() elapsed_time = current_time - self._last_time self._last_time = current_time # Reports the number of steps done per second steps_per_sec = added_steps / elapsed_time summary = Summary(value=[Summary.Value(tag=self._summary_tag, simple_value=steps_per_sec)]) if self._sv.summary_writer: self._sv.summary_writer.add_summary(summary, current_step) logging.log_first_n(logging.INFO, "%s: %g", 10, self._summary_tag, steps_per_sec)
Example #15
Source File: supervisor.py From lambda-packs with MIT License | 6 votes |
def __init__(self, sv, sess, step_counter=None): """Create a `SVStepCounterThread`. Args: sv: A `Supervisor`. sess: A `Session`. step_counter: A `Tensor` holding the step counter. By defaults, it uses sv.global_step. """ super(SVStepCounterThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess self._last_time = 0.0 self._last_step = 0 step_counter = sv.global_step if step_counter is None else step_counter self._step_counter = step_counter self._summary_tag = "%s/sec" % self._step_counter.op.name
Example #16
Source File: supervisor.py From keras-lambda with MIT License | 5 votes |
def _default_global_step_tensor(self): """Returns the global_step from the default graph. Returns: The global step `Tensor` or `None`. """ try: gs = ops.get_default_graph().get_tensor_by_name("global_step:0") if gs.dtype.base_dtype in [dtypes.int32, dtypes.int64]: return gs else: logging.warning("Found 'global_step' is not an int type: %s", gs.dtype) return None except KeyError: return None
Example #17
Source File: supervisor.py From keras-lambda with MIT License | 5 votes |
def start_loop(self): self._last_time = time.time() self._last_step = training_util.global_step( self._sess, self._sv.global_step)
Example #18
Source File: learning.py From keras-lambda with MIT License | 5 votes |
def _wait_for_step(sess, global_step, step): """Wait till the global step has reached at least 'step'. Args: sess: A session. global_step: A Tensor. step: Int. The global step to reach. """ while True: if training_util.global_step(sess, global_step) >= step: break time.sleep(1.0)
Example #19
Source File: supervisor.py From keras-lambda with MIT License | 5 votes |
def __init__(self, sv, sess): """Create a `SVStepCounterThread`. Args: sv: A `Supervisor`. sess: A `Session`. """ super(SVStepCounterThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess self._last_time = 0.0 self._last_step = 0 self._summary_tag = "%s/sec" % self._sv.global_step.op.name
Example #20
Source File: supervisor.py From keras-lambda with MIT License | 5 votes |
def global_step(self): """Return the global_step Tensor used by the supervisor. Returns: An integer Tensor for the global_step. """ return self._global_step
Example #21
Source File: supervisor.py From keras-lambda with MIT License | 5 votes |
def run_loop(self): self._sv.saver.save(self._sess, self._sv.save_path, global_step=self._sv.global_step) if self._sv.summary_writer and self._sv.global_step is not None: current_step = training_util.global_step(self._sess, self._sv.global_step) self._sv.summary_writer.add_session_log( SessionLog(status=SessionLog.CHECKPOINT, checkpoint_path=self._sv.save_path), current_step) # TODO(sherrym): All non-PEP8 compliant names will be deprecated shortly.
Example #22
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 5 votes |
def _init_global_step(self, global_step=USE_DEFAULT): """Initializes global_step. Args: global_step: An integer Tensor of size 1 that counts steps. If set to USE_DEFAULT, creates global_step tensor. """ if global_step is Supervisor.USE_DEFAULT: global_step = self._get_first_op_from_collection( ops.GraphKeys.GLOBAL_STEP) if global_step is None: global_step = self._default_global_step_tensor() if global_step is not None: ops.add_to_collection(ops.GraphKeys.GLOBAL_STEP, global_step) self._global_step = global_step
Example #23
Source File: supervisor.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _init_global_step(self, global_step=USE_DEFAULT): """Initializes global_step. Args: global_step: An integer Tensor of size 1 that counts steps. If set to USE_DEFAULT, creates global_step tensor. """ if global_step is Supervisor.USE_DEFAULT: global_step = self._get_first_op_from_collection( ops.GraphKeys.GLOBAL_STEP) if global_step is None: global_step = self._default_global_step_tensor() if global_step is not None: ops.add_to_collection(ops.GraphKeys.GLOBAL_STEP, global_step) self._global_step = global_step
Example #24
Source File: learning.py From deep_image_model with Apache License 2.0 | 5 votes |
def _wait_for_step(sess, global_step, step): """Wait till the global step has reached at least 'step'. Args: sess: A session. global_step: A Tensor. step: Int. The global step to reach. """ while True: if training_util.global_step(sess, global_step) >= step: break time.sleep(1.0)
Example #25
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 5 votes |
def run_loop(self): self._sv.saver.save(self._sess, self._sv.save_path, global_step=self._sv.global_step) if self._sv.summary_writer and self._sv.global_step is not None: current_step = training_util.global_step(self._sess, self._sv.global_step) self._sv.summary_writer.add_session_log( SessionLog(status=SessionLog.CHECKPOINT, checkpoint_path=self._sv.save_path), current_step) # TODO(sherrym): All non-PEP8 compliant names will be deprecated shortly.
Example #26
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 5 votes |
def start_loop(self): self._last_time = time.time() self._last_step = training_util.global_step( self._sess, self._sv.global_step)
Example #27
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 5 votes |
def __init__(self, sv, sess): """Create a `SVStepCounterThread`. Args: sv: A `Supervisor`. sess: A `Session`. """ super(SVStepCounterThread, self).__init__(sv.coord, sv.save_summaries_secs) self._sv = sv self._sess = sess self._last_time = 0.0 self._last_step = 0 self._summary_tag = "%s/sec" % self._sv.global_step.op.name
Example #28
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 5 votes |
def _default_global_step_tensor(self): """Returns the global_step from the default graph. Returns: The global step `Tensor` or `None`. """ try: gs = ops.get_default_graph().get_tensor_by_name("global_step:0") if gs.dtype.base_dtype in [dtypes.int32, dtypes.int64]: return gs else: logging.warning("Found 'global_step' is not an int type: %s", gs.dtype) return None except KeyError: return None
Example #29
Source File: supervisor.py From deep_image_model with Apache License 2.0 | 5 votes |
def global_step(self): """Return the global_step Tensor used by the supervisor. Returns: An integer Tensor for the global_step. """ return self._global_step
Example #30
Source File: learning.py From tf-slim with Apache License 2.0 | 5 votes |
def _wait_for_step(sess, global_step, step): """Wait till the global step has reached at least 'step'. Args: sess: A session. global_step: A Tensor. step: Int. The global step to reach. """ while True: if training_util.global_step(sess, global_step) >= step: break time.sleep(1.0)