Python pymc3.HalfNormal() Examples
The following are 2
code examples of pymc3.HalfNormal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pymc3
, or try the search function
.
Example #1
Source File: hbr.py From nispat with GNU General Public License v3.0 | 5 votes |
def from_posterior(param, samples, distribution = None, half = False, freedom=10): if len(samples.shape)>1: shape = samples.shape[1:] else: shape = None if (distribution is None): smin, smax = np.min(samples), np.max(samples) width = smax - smin x = np.linspace(smin, smax, 1000) y = stats.gaussian_kde(samples)(x) if half: x = np.concatenate([x, [x[-1] + 0.1 * width]]) y = np.concatenate([y, [0]]) else: x = np.concatenate([[x[0] - 0.1 * width], x, [x[-1] + 0.1 * width]]) y = np.concatenate([[0], y, [0]]) return pm.distributions.Interpolated(param, x, y) elif (distribution=='normal'): temp = stats.norm.fit(samples) if shape is None: return pm.Normal(param, mu=temp[0], sigma=freedom*temp[1]) else: return pm.Normal(param, mu=temp[0], sigma=freedom*temp[1], shape=shape) elif (distribution=='hnormal'): temp = stats.halfnorm.fit(samples) if shape is None: return pm.HalfNormal(param, sigma=freedom*temp[1]) else: return pm.HalfNormal(param, sigma=freedom*temp[1], shape=shape) elif (distribution=='hcauchy'): temp = stats.halfcauchy.fit(samples) if shape is None: return pm.HalfCauchy(param, freedom*temp[1]) else: return pm.HalfCauchy(param, freedom*temp[1], shape=shape)
Example #2
Source File: model_selector.py From cs-ranking with Apache License 2.0 | 5 votes |
def __init__( self, learner_cls, parameter_keys, model_params, fit_params, model_path, **kwargs, ): self.priors = [ [pm.Normal, {"mu": 0, "sd": 10}], [pm.Laplace, {"mu": 0, "b": 10}], ] self.uniform_prior = [pm.Uniform, {"lower": -20, "upper": 20}] self.prior_indices = np.arange(len(self.priors)) self.parameter_f = [ (pm.Normal, {"mu": 0, "sd": 5}), (pm.Cauchy, {"alpha": 0, "beta": 1}), 0, -5, 5, ] self.parameter_s = [ (pm.HalfCauchy, {"beta": 1}), (pm.HalfNormal, {"sd": 0.5}), (pm.Exponential, {"lam": 0.5}), (pm.Uniform, {"lower": 1, "upper": 10}), 10, ] # ,(pm.HalfCauchy, {'beta': 2}), (pm.HalfNormal, {'sd': 1}),(pm.Exponential, {'lam': 1.0})] self.learner_cls = learner_cls self.model_params = model_params self.fit_params = fit_params self.parameter_keys = parameter_keys self.parameters = list(product(self.parameter_f, self.parameter_s)) pf_arange = np.arange(len(self.parameter_f)) ps_arange = np.arange(len(self.parameter_s)) self.parameter_ind = list(product(pf_arange, ps_arange)) self.model_path = model_path self.models = dict() self.logger = logging.getLogger(ModelSelector.__name__)