Python wandb.watch() Examples
The following are 10
code examples of wandb.watch().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
wandb
, or try the search function
.
Example #1
Source File: visualization.py From tape with BSD 3-Clause "New" or "Revised" License | 5 votes |
def watch(self, model: nn.Module) -> None: raise NotImplementedError
Example #2
Source File: visualization.py From tape with BSD 3-Clause "New" or "Revised" License | 5 votes |
def watch(self, model: nn.Module) -> None: pass
Example #3
Source File: visualization.py From tape with BSD 3-Clause "New" or "Revised" License | 5 votes |
def watch(self, model: nn.Module) -> None: logger.warn("Cannot watch models when using a TBVisualizer. " "Configure wandb for this functionality")
Example #4
Source File: visualization.py From tape with BSD 3-Clause "New" or "Revised" License | 5 votes |
def watch(self, model: nn.Module): wandb.watch(model)
Example #5
Source File: wandb_logger.py From catalyst with Apache License 2.0 | 5 votes |
def on_stage_start(self, runner: IRunner): """Initialize Weights & Biases.""" wandb.init(**self.logging_params, reinit=True, dir=str(runner.logdir)) wandb.watch( models=runner.model, criterion=runner.criterion, log=self.log )
Example #6
Source File: agent.py From rl_algorithms with MIT License | 4 votes |
def train(self): """Train the agent.""" # logger if self.args.log: self.set_wandb() # wandb.watch([self.actor, self.critic], log="parameters") for self.i_episode in range(1, self.args.episode_num + 1): state = self.env.reset() done = False score = 0 policy_loss_episode = list() value_loss_episode = list() self.episode_step = 0 while not done: if self.args.render and self.i_episode >= self.args.render_after: self.env.render() action = self.select_action(state) next_state, reward, done, _ = self.step(action) self.episode_step += 1 policy_loss, value_loss = self.learner.update_model(self.transition) policy_loss_episode.append(policy_loss) value_loss_episode.append(value_loss) state = next_state score += reward # logging policy_loss = np.array(policy_loss_episode).mean() value_loss = np.array(value_loss_episode).mean() log_value = (self.i_episode, score, policy_loss, value_loss) self.write_log(log_value) if self.i_episode % self.args.save_period == 0: self.learner.save_params(self.i_episode) self.interim_test() # termination self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
Example #7
Source File: ddpg_agent.py From rl_algorithms with MIT License | 4 votes |
def train(self): """Train the agent.""" # logger if self.args.log: self.set_wandb() # wandb.watch([self.actor, self.critic], log="parameters") # pre-training if needed self.pretrain() for self.i_episode in range(1, self.args.episode_num + 1): state = self.env.reset() done = False score = 0 self.episode_step = 0 losses = list() t_begin = time.time() while not done: if self.args.render and self.i_episode >= self.args.render_after: self.env.render() action = self.select_action(state) next_state, reward, done, _ = self.step(action) self.total_step += 1 self.episode_step += 1 if len(self.memory) >= self.hyper_params.batch_size: for _ in range(self.hyper_params.multiple_update): experience = self.memory.sample() demos = self.demo_memory.sample() experience, demos = ( numpy2floattensor(experience), numpy2floattensor(demos), ) loss = self.learner.update_model(experience, demos) losses.append(loss) # for logging state = next_state score += reward t_end = time.time() avg_time_cost = (t_end - t_begin) / self.episode_step # logging if losses: avg_loss = np.vstack(losses).mean(axis=0) log_value = (self.i_episode, avg_loss, score, avg_time_cost) self.write_log(log_value) losses.clear() if self.i_episode % self.args.save_period == 0: self.learner.save_params(self.i_episode) self.interim_test() # termination self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
Example #8
Source File: agent.py From rl_algorithms with MIT License | 4 votes |
def train(self): """Train the agent.""" # logger if self.args.log: self.set_wandb() # wandb.watch([self.actor, self.critic1, self.critic2], log="parameters") for self.i_episode in range(1, self.args.episode_num + 1): state = self.env.reset() done = False score = 0 loss_episode = list() self.episode_step = 0 t_begin = time.time() while not done: if self.args.render and self.i_episode >= self.args.render_after: self.env.render() action = self.select_action(state) next_state, reward, done, _ = self.step(action) self.total_step += 1 self.episode_step += 1 state = next_state score += reward if len(self.memory) >= self.hyper_params.batch_size: experience = self.memory.sample() experience = numpy2floattensor(experience) loss = self.learner.update_model(experience) loss_episode.append(loss) # for logging t_end = time.time() avg_time_cost = (t_end - t_begin) / self.episode_step # logging if loss_episode: avg_loss = np.vstack(loss_episode).mean(axis=0) log_value = ( self.i_episode, avg_loss, score, self.hyper_params.policy_update_freq, avg_time_cost, ) self.write_log(log_value) if self.i_episode % self.args.save_period == 0: self.learner.save_params(self.i_episode) self.interim_test() # termination self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
Example #9
Source File: agent.py From rl_algorithms with MIT License | 4 votes |
def train(self): """Train the agent.""" # logger if self.args.log: self.set_wandb() # wandb.watch([self.actor, self.critic], log="parameters") # pre-training if needed self.pretrain() for self.i_episode in range(1, self.args.episode_num + 1): state = self.env.reset() done = False score = 0 self.episode_step = 0 losses = list() t_begin = time.time() while not done: if self.args.render and self.i_episode >= self.args.render_after: self.env.render() action = self.select_action(state) next_state, reward, done, _ = self.step(action) self.total_step += 1 self.episode_step += 1 if len(self.memory) >= self.hyper_params.batch_size: for _ in range(self.hyper_params.multiple_update): experience = self.memory.sample() experience = numpy2floattensor(experience) loss = self.learner.update_model(experience) losses.append(loss) # for logging state = next_state score += reward t_end = time.time() avg_time_cost = (t_end - t_begin) / self.episode_step # logging if losses: avg_loss = np.vstack(losses).mean(axis=0) log_value = (self.i_episode, avg_loss, score, avg_time_cost) self.write_log(log_value) losses.clear() if self.i_episode % self.args.save_period == 0: self.learner.save_params(self.i_episode) self.interim_test() # termination self.env.close() self.learner.save_params(self.i_episode) self.interim_test()
Example #10
Source File: wandb_logger.py From catalyst with Apache License 2.0 | 4 votes |
def __init__( self, metric_names: List[str] = None, log_on_batch_end: bool = False, log_on_epoch_end: bool = True, log: str = None, **logging_params, ): """ Args: metric_names (List[str]): list of metric names to log, if None - logs everything log_on_batch_end (bool): logs per-batch metrics if set True log_on_epoch_end (bool): logs per-epoch metrics if set True log (str): wandb.watch parameter. Can be "all", "gradients" or "parameters" **logging_params: any parameters of function `wandb.init` except `reinit` which is automatically set to `True` and `dir` which is set to `<logdir>` """ super().__init__( order=CallbackOrder.logging, node=CallbackNode.master, scope=CallbackScope.experiment, ) self.metrics_to_log = metric_names self.log_on_batch_end = log_on_batch_end self.log_on_epoch_end = log_on_epoch_end self.log = log if not (self.log_on_batch_end or self.log_on_epoch_end): raise ValueError("You have to log something!") if (self.log_on_batch_end and not self.log_on_epoch_end) or ( not self.log_on_batch_end and self.log_on_epoch_end ): self.batch_log_suffix = "" self.epoch_log_suffix = "" else: self.batch_log_suffix = "_batch" self.epoch_log_suffix = "_epoch" self.logging_params = logging_params