Python keras.backend.normalize_data_format() Examples
The following are 12
code examples of keras.backend.normalize_data_format().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend
, or try the search function
.
Example #1
Source File: model.py From edafa with MIT License | 5 votes |
def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling')
Example #2
Source File: cifar_resnet.py From semantic-embeddings with MIT License | 5 votes |
def __init__(self, padding=1, data_format=None, **kwargs): super(ChannelPadding, self).__init__(**kwargs) self.padding = conv_utils.normalize_tuple(padding, 2, 'padding') self.data_format = normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4)
Example #3
Source File: subpixel.py From semantic-embeddings with MIT License | 5 votes |
def __init__(self, scale_factor=2, data_format=None, **kwargs): super(SubPixelUpscaling, self).__init__(**kwargs) self.scale_factor = scale_factor self.data_format = normalize_data_format(data_format)
Example #4
Source File: model.py From segmentation_training_pipeline with MIT License | 5 votes |
def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs): super(BilinearUpsampling, self).__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) if output_size: self.output_size = conv_utils.normalize_tuple( output_size, 2, 'output_size') self.upsampling = None else: self.output_size = None self.upsampling = conv_utils.normalize_tuple( upsampling, 2, 'upsampling')
Example #5
Source File: conv_utils.py From keras-contrib with MIT License | 5 votes |
def normalize_data_format(value): """Checks that the value correspond to a valid data format. Copy of the function in keras-team/keras because it's not public API. # Arguments value: String or None. `'channels_first'` or `'channels_last'`. # Returns A string, either `'channels_first'` or `'channels_last'` # Example ```python >>> from keras import backend as K >>> K.normalize_data_format(None) 'channels_first' >>> K.normalize_data_format('channels_last') 'channels_last' ``` # Raises ValueError: if `value` or the global `data_format` invalid. """ if value is None: value = K.image_data_format() data_format = value.lower() if data_format not in {'channels_first', 'channels_last'}: raise ValueError('The `data_format` argument must be one of ' '"channels_first", "channels_last". Received: ' + str(value)) return data_format
Example #6
Source File: subpixel.py From keras-onnx with MIT License | 5 votes |
def __init__(self, scale_factor=2, data_format=None, **kwargs): super(SubPixelUpscaling, self).__init__(**kwargs) self.scale_factor = scale_factor self.data_format = normalize_data_format(data_format)
Example #7
Source File: custom.py From DLWP with MIT License | 5 votes |
def __init__(self, loss_function, lats, data_format='channels_last', weighting='cosine'): """ Initialize a weighted loss. :param loss_function: method: Keras loss function to apply after the weighting :param lats: ndarray: 1-dimensional array of latitude coordinates :param data_format: Keras data_format ('channels_first' or 'channels_last') :param weighting: str: type of weighting to apply. Options are: cosine: weight by the cosine of the latitude (default) midlatitude: weight by the cosine of the latitude but also apply a 25% reduction to the equator and boost to the mid-latitudes """ self.loss_function = loss_function self.lats = lats self.data_format = K.normalize_data_format(data_format) if weighting not in ['cosine', 'midlatitude']: raise ValueError("'weighting' must be one of 'cosine' or 'midlatitude'") self.weighting = weighting lat_tensor = K.zeros(lats.shape) print(lats) lat_tensor.assign(K.cast_to_floatx(lats[:])) self.weights = K.cos(lat_tensor * np.pi / 180.) if self.weighting == 'midlatitude': self.weights = self.weights - 0.25 * K.sin(lat_tensor * 2 * np.pi / 180.) self.is_init = False self.__name__ = 'latitude_weighted_loss'
Example #8
Source File: layers.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, size=(2, 2), data_format=None, **kwargs): super().__init__(**kwargs) self.data_format = K.normalize_data_format(data_format) self.size = conv_utils.normalize_tuple(size, 2, "size")
Example #9
Source File: layers.py From faceswap with GNU General Public License v3.0 | 5 votes |
def __init__(self, scale_factor=2, data_format=None, **kwargs): super(SubPixelUpscaling, self).__init__(**kwargs) self.scale_factor = scale_factor self.data_format = K.normalize_data_format(data_format)
Example #10
Source File: capslayers.py From deepcaps with MIT License | 5 votes |
def __init__(self, ch_j, n_j, kernel_size=(3, 3), strides=(1, 1), r_num=1, b_alphas=[8, 8, 8], padding='same', data_format='channels_last', dilation_rate=(1, 1), kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, activity_regularizer=None, kernel_constraint=None, **kwargs): super(Conv2DCaps, self).__init__(**kwargs) rank = 2 self.ch_j = ch_j # Number of capsules in layer J self.n_j = n_j # Number of neurons in a capsule in J self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.r_num = r_num self.b_alphas = b_alphas self.padding = conv_utils.normalize_padding(padding) #self.data_format = conv_utils.normalize_data_format(data_format) self.data_format = K.normalize_data_format(data_format) self.dilation_rate = (1, 1) self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.input_spec = InputSpec(ndim=rank + 3)
Example #11
Source File: conv.py From Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition with GNU General Public License v3.0 | 4 votes |
def __init__(self, rank, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True, normalize_weight=False, kernel_initializer='quaternion', bias_initializer='zeros', gamma_diag_initializer=sqrt_init, gamma_off_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, gamma_diag_regularizer=None, gamma_off_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, gamma_diag_constraint=None, gamma_off_constraint=None, init_criterion='he', seed=None, spectral_parametrization=False, epsilon=1e-7, **kwargs): super(QuaternionConv, self).__init__(**kwargs) self.rank = rank self.filters = filters self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size') self.strides = conv_utils.normalize_tuple(strides, rank, 'strides') self.padding = conv_utils.normalize_padding(padding) self.data_format = K.normalize_data_format(data_format) self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate') self.activation = activations.get(activation) self.use_bias = use_bias self.normalize_weight = normalize_weight self.init_criterion = init_criterion self.spectral_parametrization = spectral_parametrization self.epsilon = epsilon self.kernel_initializer = sanitizedInitGet(kernel_initializer) self.bias_initializer = sanitizedInitGet(bias_initializer) self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer) self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer) self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.gamma_diag_constraint = constraints.get(gamma_diag_constraint) self.gamma_off_constraint = constraints.get(gamma_off_constraint) if seed is None: self.seed = np.random.randint(1, 10e6) else: self.seed = seed self.input_spec = InputSpec(ndim=self.rank + 2)
Example #12
Source File: custom.py From DLWP with MIT License | 4 votes |
def row_conv2d(inputs, kernel, kernel_size, strides, output_shape, data_format=None): """Apply 2D conv with weights shared only along rows. Adapted from K.local_conv2d by @jweyn # Arguments inputs: 4D tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. kernel: the row-shared weights for convolution, with shape (output_rows, kernel_size, input_channels, filters) kernel_size: a tuple of 2 integers, specifying the width and height of the 2D convolution window. strides: a tuple of 2 integers, specifying the strides of the convolution along the width and height. output_shape: a tuple with (output_row, output_col) data_format: the data format, channels_first or channels_last # Returns A 4d tensor with shape: (batch_size, filters, new_rows, new_cols) if data_format='channels_first' or 4D tensor with shape: (batch_size, new_rows, new_cols, filters) if data_format='channels_last'. # Raises ValueError: if `data_format` is neither `channels_last` or `channels_first`. """ data_format = K.normalize_data_format(data_format) stride_row, stride_col = strides output_row, output_col = output_shape out = [] for i in range(output_row): # Slice the rows with the neighbors they need slice_row = slice(i * stride_row, i * stride_col + kernel_size[0]) if data_format == 'channels_first': x = inputs[:, :, slice_row, :] # batch, 16, 5, 144 else: x = inputs[:, slice_row, :, :] # batch, 5, 144, 16 # Convolve, resulting in an array with only one row: batch, 1, 140, 6 or batch, 6, 1, 140 x = K.conv2d(x, kernel[i], strides=strides, padding='valid', data_format=data_format) out.append(x) if data_format == 'channels_first': output = K.concatenate(out, axis=2) else: output = K.concatenate(out, axis=1) del x del out return output