Python detectron.utils.c2.CudaDevice() Examples
The following are 6
code examples of detectron.utils.c2.CudaDevice().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
detectron.utils.c2
, or try the search function
.

Example #1
Source File: loader.py From KL-Loss with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #2
Source File: loader.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #3
Source File: loader.py From Detectron-Cascade-RCNN with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #4
Source File: loader.py From Detectron with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #5
Source File: loader.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )
Example #6
Source File: loader.py From CBNet with Apache License 2.0 | 6 votes |
def enqueue_blobs(self, gpu_id, blob_names, blobs): """Put a mini-batch on a BlobsQueue.""" assert len(blob_names) == len(blobs) t = time.time() dev = c2_utils.CudaDevice(gpu_id) queue_name = 'gpu_{}/{}'.format(gpu_id, self._blobs_queue_name) blob_names = ['gpu_{}/{}'.format(gpu_id, b) for b in blob_names] for (blob_name, blob) in zip(blob_names, blobs): workspace.FeedBlob(blob_name, blob, device_option=dev) logger.debug( 'enqueue_blobs {}: workspace.FeedBlob: {}'. format(gpu_id, time.time() - t) ) t = time.time() op = core.CreateOperator( 'SafeEnqueueBlobs', [queue_name] + blob_names, blob_names + [queue_name + '_enqueue_status'], device_option=dev ) workspace.RunOperatorOnce(op) logger.debug( 'enqueue_blobs {}: workspace.RunOperatorOnce: {}'. format(gpu_id, time.time() - t) )