Python detectron.utils.c2.get_nvidia_info() Examples
The following are 6
code examples of detectron.utils.c2.get_nvidia_info().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
detectron.utils.c2
, or try the search function
.
Example #1
Source File: train_net.py From KL-Loss with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.single_gpu_testing, args.opts)
Example #2
Source File: train_net.py From Clustered-Object-Detection-in-Aerial-Image with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #3
Source File: train_net.py From Detectron-Cascade-RCNN with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #4
Source File: train_net.py From Detectron with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #5
Source File: train_net.py From Detectron-DA-Faster-RCNN with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)
Example #6
Source File: train_net.py From CBNet with Apache License 2.0 | 5 votes |
def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() smi_output, cuda_ver, cudnn_ver = c2_utils.get_nvidia_info() logger.info("cuda version : {}".format(cuda_ver)) logger.info("cudnn version: {}".format(cudnn_ver)) logger.info("nvidia-smi output:\n{}".format(smi_output)) logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run checkpoints = detectron.utils.train.train_model() # Test the trained model if not args.skip_test: test_model(checkpoints['final'], args.multi_gpu_testing, args.opts)