Python maskrcnn_benchmark.modeling.roi_heads.mask_head.inference.Masker() Examples

The following are 30 code examples of maskrcnn_benchmark.modeling.roi_heads.mask_head.inference.Masker(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module maskrcnn_benchmark.modeling.roi_heads.mask_head.inference , or try the search function .
Example #1
Source File: predictor.py    From remote_sensing_object_detection_2019 with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #2
Source File: predictor.py    From retinamask with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        checkpointer = DetectronCheckpointer(cfg, self.model)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #3
Source File: predictor.py    From training with Apache License 2.0 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #4
Source File: predictor.py    From FreeAnchor with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        checkpointer = DetectronCheckpointer(cfg, self.model)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.checkpointer = checkpointer
        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim

        self.CATEGORIES = COCO_CATEGORIES if cfg.DATASETS.TEST[0][:4] == 'coco' else VOC_CATEGORIES 
Example #5
Source File: predictor.py    From maskrcnn-benchmark with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
        weight_loading = None
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)
        
        if weight_loading:
            print('Loading weight from {}.'.format(weight_loading))
            _ = checkpointer._load_model(torch.load(weight_loading))
        
        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #6
Source File: predictor.py    From HRNet-MaskRCNN-Benchmark with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #7
Source File: predictor.py    From RRPN_pytorch with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #8
Source File: predictor.py    From sampling-free with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.color_list = colormap()
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = torch.tensor(confidence_threshold)
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #9
Source File: predictor.py    From RRPN_pytorch with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #10
Source File: predictor.py    From argoverse_baselinetracker with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #11
Source File: predictor.py    From remote_sensing_object_detection_2019 with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #12
Source File: predictor.py    From remote_sensing_object_detection_2019 with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #13
Source File: predictor.py    From RRPN_pytorch with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #14
Source File: predictor.py    From DetNAS with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
        weight_loading = None
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)
        
        if weight_loading:
            print('Loading weight from {}.'.format(weight_loading))
            _ = checkpointer._load_model(torch.load(weight_loading))
        
        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #15
Source File: predictor.py    From DF-Traffic-Sign-Identification with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #16
Source File: predictor.py    From R2CNN.pytorch with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #17
Source File: predictor.py    From Res2Net-maskrcnn with MIT License 5 votes vote down vote up
def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim 
Example #18
Source File: coco_eval.py    From TinyBenchmark with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results 
Example #19
Source File: coco_eval.py    From DF-Traffic-Sign-Identification with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results 
Example #20
Source File: coco_eval.py    From RRPN_pytorch with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        # TODO replace with get_img_info?
        image_width = dataset.coco.imgs[original_id]["width"]
        image_height = dataset.coco.imgs[original_id]["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron 
Example #21
Source File: inference.py    From maskscoring_rcnn with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset, maskiou_on):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        # TODO replace with get_img_info?
        image_width = dataset.coco.imgs[original_id]["width"]
        image_height = dataset.coco.imgs[original_id]["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")

        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        if maskiou_on:
            scores = prediction.get_field("mask_scores").tolist()
        else:
            scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron 
Example #22
Source File: coco_eval.py    From NAS-FCOS with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron 
Example #23
Source File: coco_eval.py    From Res2Net-maskrcnn with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results 
Example #24
Source File: coco_eval.py    From training with Apache License 2.0 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results 
Example #25
Source File: inference.py    From retinamask with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        # TODO replace with get_img_info?
        image_width = dataset.coco.imgs[original_id]["width"]
        image_height = dataset.coco.imgs[original_id]["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        masks = masker(masks, prediction)
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron 
Example #26
Source File: inference.py    From FreeAnchor with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        # TODO replace with get_img_info?
        image_width = dataset.coco.imgs[original_id]["width"]
        image_height = dataset.coco.imgs[original_id]["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        masks = masker(masks, prediction)
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron 
Example #27
Source File: coco_eval.py    From maskrcnn-benchmark with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results 
Example #28
Source File: coco_eval.py    From HRNet-MaskRCNN-Benchmark with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        # TODO replace with get_img_info?
        image_width = dataset.coco.imgs[original_id]["width"]
        image_height = dataset.coco.imgs[original_id]["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron 
Example #29
Source File: coco_eval.py    From sampling-free with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        img_info = dataset.get_img_info(image_id)
        image_width = img_info["width"]
        image_height = img_info["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results 
Example #30
Source File: coco_eval.py    From remote_sensing_object_detection_2019 with MIT License 4 votes vote down vote up
def prepare_for_coco_segmentation(predictions, dataset):
    import pycocotools.mask as mask_util
    import numpy as np

    masker = Masker(threshold=0.5, padding=1)
    # assert isinstance(dataset, COCODataset)
    coco_results = []
    for image_id, prediction in tqdm(enumerate(predictions)):
        original_id = dataset.id_to_img_map[image_id]
        if len(prediction) == 0:
            continue

        # TODO replace with get_img_info?
        image_width = dataset.coco.imgs[original_id]["width"]
        image_height = dataset.coco.imgs[original_id]["height"]
        prediction = prediction.resize((image_width, image_height))
        masks = prediction.get_field("mask")
        # t = time.time()
        # Masker is necessary only if masks haven't been already resized.
        if list(masks.shape[-2:]) != [image_height, image_width]:
            masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
            masks = masks[0]
        # logger.info('Time mask: {}'.format(time.time() - t))
        # prediction = prediction.convert('xywh')

        # boxes = prediction.bbox.tolist()
        scores = prediction.get_field("scores").tolist()
        labels = prediction.get_field("labels").tolist()

        # rles = prediction.get_field('mask')

        rles = [
            mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
            for mask in masks
        ]
        for rle in rles:
            rle["counts"] = rle["counts"].decode("utf-8")

        mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]

        coco_results.extend(
            [
                {
                    "image_id": original_id,
                    "category_id": mapped_labels[k],
                    "segmentation": rle,
                    "score": scores[k],
                }
                for k, rle in enumerate(rles)
            ]
        )
    return coco_results


# inspired from Detectron