Python tensorflow.python.keras.initializers.RandomNormal() Examples
The following are 2
code examples of tensorflow.python.keras.initializers.RandomNormal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.keras.initializers
, or try the search function
.
Example #1
Source File: feature_column.py From DeepCTR with Apache License 2.0 | 5 votes |
def __new__(cls, name, vocabulary_size, embedding_dim=4, use_hash=False, dtype="int32", embeddings_initializer=None, embedding_name=None, group_name=DEFAULT_GROUP_NAME, trainable=True): if embedding_dim == "auto": embedding_dim = 6 * int(pow(vocabulary_size, 0.25)) if embeddings_initializer is None: embeddings_initializer = RandomNormal(mean=0.0, stddev=0.0001, seed=2020) if embedding_name is None: embedding_name = name return super(SparseFeat, cls).__new__(cls, name, vocabulary_size, embedding_dim, use_hash, dtype, embeddings_initializer, embedding_name, group_name, trainable)
Example #2
Source File: input_embedding.py From icme2019 with MIT License | 4 votes |
def create_embedding_dict(feature_dim_dict, embedding_size, init_std, seed, l2_reg, prefix='sparse', seq_mask_zero=True): if embedding_size == 'auto': sparse_embedding = {feat.name: Embedding(feat.dimension, 6 * int(pow(feat.dimension, 0.25)), embeddings_initializer=RandomNormal( mean=0.0, stddev=init_std, seed=seed), embeddings_regularizer=l2(l2_reg), name=prefix+'_emb_' + str(i) + '-' + feat.name) for i, feat in enumerate(feature_dim_dict["sparse"])} else: sparse_embedding = {feat.name: Embedding(feat.dimension, embedding_size, embeddings_initializer=RandomNormal( mean=0.0, stddev=init_std, seed=seed), embeddings_regularizer=l2( l2_reg), name=prefix+'_emb_' + str(i) + '-' + feat.name) for i, feat in enumerate(feature_dim_dict["sparse"])} if 'sequence' in feature_dim_dict: count = len(sparse_embedding) sequence_dim_list = feature_dim_dict['sequence'] for feat in sequence_dim_list: # if feat.name not in sparse_embedding: if embedding_size == "auto": sparse_embedding[feat.name] = Embedding(feat.dimension, 6 * int(pow(feat.dimension, 0.25)), embeddings_initializer=RandomNormal( mean=0.0, stddev=init_std, seed=seed), embeddings_regularizer=l2( l2_reg), name=prefix + '_emb_' + str(count) + '-' + feat.name, mask_zero=seq_mask_zero) else: sparse_embedding[feat.name] = Embedding(feat.dimension, embedding_size, embeddings_initializer=RandomNormal( mean=0.0, stddev=init_std, seed=seed), embeddings_regularizer=l2( l2_reg), name=prefix+'_emb_' + str(count) + '-' + feat.name, mask_zero=seq_mask_zero) count += 1 return sparse_embedding