Python pandas.core.tools.datetimes.to_time() Examples
The following are 9
code examples of pandas.core.tools.datetimes.to_time().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pandas.core.tools.datetimes
, or try the search function
.
Example #1
Source File: test_tools.py From recruit with Apache License 2.0 | 5 votes |
def test_parsers_time(self): # GH11818 strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" pytest.raises(ValueError, tools.to_time, new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr
Example #2
Source File: test_tools.py From vnpy_crypto with MIT License | 5 votes |
def test_parsers_time(self): # GH11818 strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" pytest.raises(ValueError, tools.to_time, new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr
Example #3
Source File: test_tools.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def test_parsers_time(self): # GH11818 strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" pytest.raises(ValueError, tools.to_time, new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr
Example #4
Source File: test_tools.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_parsers_time(self): # GH11818 _skip_if_has_locale() strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" pytest.raises(ValueError, tools.to_time, new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr
Example #5
Source File: test_tools.py From coffeegrindsize with MIT License | 5 votes |
def test_parsers_time(self): # GH11818 strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" pytest.raises(ValueError, tools.to_time, new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr
Example #6
Source File: test_tools.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_parsers_time(self): # GH11818 strings = ["14:15", "1415", "2:15pm", "0215pm", "14:15:00", "141500", "2:15:00pm", "021500pm", time(14, 15)] expected = time(14, 15) for time_string in strings: assert tools.to_time(time_string) == expected new_string = "14.15" pytest.raises(ValueError, tools.to_time, new_string) assert tools.to_time(new_string, format="%H.%M") == expected arg = ["14:15", "20:20"] expected_arr = [time(14, 15), time(20, 20)] assert tools.to_time(arg) == expected_arr assert tools.to_time(arg, format="%H:%M") == expected_arr assert tools.to_time(arg, infer_time_format=True) == expected_arr assert tools.to_time(arg, format="%I:%M%p", errors="coerce") == [None, None] res = tools.to_time(arg, format="%I:%M%p", errors="ignore") tm.assert_numpy_array_equal(res, np.array(arg, dtype=np.object_)) with pytest.raises(ValueError): tools.to_time(arg, format="%I:%M%p", errors="raise") tm.assert_series_equal(tools.to_time(Series(arg, name="test")), Series(expected_arr, name="test")) res = tools.to_time(np.array(arg)) assert isinstance(res, list) assert res == expected_arr
Example #7
Source File: datetimes.py From recruit with Apache License 2.0 | 4 votes |
def indexer_between_time(self, start_time, end_time, include_start=True, include_end=True): """ Return index locations of values between particular times of day (e.g., 9:00-9:30AM). Parameters ---------- start_time, end_time : datetime.time, str datetime.time or string in appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p", "%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p"). include_start : boolean, default True include_end : boolean, default True Returns ------- values_between_time : array of integers See Also -------- indexer_at_time, DataFrame.between_time """ start_time = tools.to_time(start_time) end_time = tools.to_time(end_time) time_micros = self._get_time_micros() start_micros = _time_to_micros(start_time) end_micros = _time_to_micros(end_time) if include_start and include_end: lop = rop = operator.le elif include_start: lop = operator.le rop = operator.lt elif include_end: lop = operator.lt rop = operator.le else: lop = rop = operator.lt if start_time <= end_time: join_op = operator.and_ else: join_op = operator.or_ mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros)) return mask.nonzero()[0]
Example #8
Source File: datetimes.py From vnpy_crypto with MIT License | 4 votes |
def indexer_between_time(self, start_time, end_time, include_start=True, include_end=True): """ Return index locations of values between particular times of day (e.g., 9:00-9:30AM). Parameters ---------- start_time, end_time : datetime.time, str datetime.time or string in appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p", "%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p"). include_start : boolean, default True include_end : boolean, default True Returns ------- values_between_time : array of integers See Also -------- indexer_at_time, DataFrame.between_time """ start_time = tools.to_time(start_time) end_time = tools.to_time(end_time) time_micros = self._get_time_micros() start_micros = _time_to_micros(start_time) end_micros = _time_to_micros(end_time) if include_start and include_end: lop = rop = operator.le elif include_start: lop = operator.le rop = operator.lt elif include_end: lop = operator.lt rop = operator.le else: lop = rop = operator.lt if start_time <= end_time: join_op = operator.and_ else: join_op = operator.or_ mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros)) return mask.nonzero()[0]
Example #9
Source File: datetimes.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 4 votes |
def indexer_between_time(self, start_time, end_time, include_start=True, include_end=True): """ Return index locations of values between particular times of day (e.g., 9:00-9:30AM). Parameters ---------- start_time, end_time : datetime.time, str datetime.time or string in appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p", "%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p"). include_start : boolean, default True include_end : boolean, default True Returns ------- values_between_time : array of integers See Also -------- indexer_at_time, DataFrame.between_time """ start_time = tools.to_time(start_time) end_time = tools.to_time(end_time) time_micros = self._get_time_micros() start_micros = _time_to_micros(start_time) end_micros = _time_to_micros(end_time) if include_start and include_end: lop = rop = operator.le elif include_start: lop = operator.le rop = operator.lt elif include_end: lop = operator.lt rop = operator.le else: lop = rop = operator.lt if start_time <= end_time: join_op = operator.and_ else: join_op = operator.or_ mask = join_op(lop(start_micros, time_micros), rop(time_micros, end_micros)) return mask.nonzero()[0]